Linear and Non-linear Stability Analysis in Boiling Water Reactors

Linear and Non-linear Stability Analysis in Boiling Water Reactors

Author: Alfonso Prieto Guerrero

Publisher: Woodhead Publishing

Published: 2018-10-15

Total Pages: 474

ISBN-13: 0081024460

DOWNLOAD EBOOK

Linear and Non-Linear Stability Analysis in Boiling Water Reactors: The Design of Real-Time Stability Monitors presents a thorough analysis of the most innovative BWR reactors and stability phenomena in one accessible resource. The book presents a summary of existing literature on BWRs to give early career engineers and researchers a solid background in the field, as well as the latest research on stability phenomena (propagation phenomena in BWRs), nuclear power monitors, and advanced computer systems used to for the prediction of stability. It also emphasizes the importance of BWR technology and embedded neutron monitoring systems (APRMs and LPRMs), and introduces non-linear stability parameters that can be used for the onset detection of instabilities in BWRs. Additionally, the book details the scope, advantages, and disadvantages of multiple advanced linear and non linear signal processing methods, and includes analytical case studies of existing plants. This combination makes Linear and Non-Linear Stability Analysis in Boiling Water Reactors a valuable resource for nuclear engineering students focusing on linear and non-linear analysis, as well as for those working and researching in a nuclear power capacity looking to implement stability methods and estimate decay ratios using non-linear techniques. - Explores the nuclear stability of Boiling Water Reactors based on linear and non-linear models - Evaluates linear signal processing methods such as autoregressive models, Fourier-based methods, and wavelets to calculate decay ratios - Proposes novel non-linear signal analysis techniques linked to non-linear stability indicators - Includes case studies of various existing nuclear power plants as well as mathematical models and simulations


Fractional-Order Models for Nuclear Reactor Analysis

Fractional-Order Models for Nuclear Reactor Analysis

Author: Gilberto Espinosa Paredes

Publisher: Woodhead Publishing

Published: 2020-10-22

Total Pages: 404

ISBN-13: 0128236663

DOWNLOAD EBOOK

Fractional-Order Models for Nuclear Reactor Analysis presents fractional modeling issues in the context of anomalous diffusion processes in an accessible and practical way. The book emphasizes the importance of non-Fickian diffusion in heterogeneous systems as the core of the nuclear reactor, as well as different variations of diffusion processes in nuclear reactors which are presented to establish the importance of nuclear and thermohydraulic phenomena and the physical side effects of feedback. In addition, the book analyzes core issues in fractional modeling in nuclear reactors surrounding phenomenological description and important analytical sub-diffusive processes in the transport neutron. Users will find the most innovative modeling techniques of nuclear reactors using operator differentials of fractional order and applications in nuclear design and reactor dynamics. Proposed methods are tested with Boltzmann equations and non-linear order models alongside real data from nuclear power plants, making this a valuable resource for nuclear professionals, researchers and graduate students, as well as those working in nuclear research centers with expertise in mathematical modeling, physics and control. - Presents and analyzes a new paradigm of nuclear reactor phenomena with fractional modeling - Considers principles of fractional calculation, methods of solving differential equations of fractional order, and their applications - Includes methodologies of linear and nonlinear analysis, along with design and dynamic analyses