A New Branch of Mathematics

A New Branch of Mathematics

Author: Hermann Grassmann

Publisher:

Published: 1995

Total Pages: 588

ISBN-13:

DOWNLOAD EBOOK

This is a translation of the work of Grassmann, a 19th-century mathematician, who is acknowledged as one of the founders of vector analysis. His ideas have recently been applied in elementary particle physics and computer sciences, as well as in analytic geometry.


Mathematics Form and Function

Mathematics Form and Function

Author: Saunders MacLane

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 486

ISBN-13: 1461248728

DOWNLOAD EBOOK

This book records my efforts over the past four years to capture in words a description of the form and function of Mathematics, as a background for the Philosophy of Mathematics. My efforts have been encouraged by lec tures that I have given at Heidelberg under the auspices of the Alexander von Humboldt Stiftung, at the University of Chicago, and at the University of Minnesota, the latter under the auspices of the Institute for Mathematics and Its Applications. Jean Benabou has carefully read the entire manuscript and has offered incisive comments. George Glauberman, Car los Kenig, Christopher Mulvey, R. Narasimhan, and Dieter Puppe have provided similar comments on chosen chapters. Fred Linton has pointed out places requiring a more exact choice of wording. Many conversations with George Mackey have given me important insights on the nature of Mathematics. I have had similar help from Alfred Aeppli, John Gray, Jay Goldman, Peter Johnstone, Bill Lawvere, and Roger Lyndon. Over the years, I have profited from discussions of general issues with my colleagues Felix Browder and Melvin Rothenberg. Ideas from Tammo Tom Dieck, Albrecht Dold, Richard Lashof, and Ib Madsen have assisted in my study of geometry. Jerry Bona and B.L. Foster have helped with my examina tion of mechanics. My observations about logic have been subject to con structive scrutiny by Gert Miiller, Marian Boykan Pour-El, Ted Slaman, R. Voreadou, Volker Weispfennig, and Hugh Woodin.


Uncertainty Theory

Uncertainty Theory

Author: Baoding Liu

Publisher: Springer

Published: 2007-09-14

Total Pages: 263

ISBN-13: 3540731652

DOWNLOAD EBOOK

This book provides a self-contained, comprehensive and up-to-date presentation of uncertainty theory. The purpose is to equip the readers with an axiomatic approach to deal with uncertainty. For this new edition the entire text has been totally rewritten. The chapters on chance theory and uncertainty theory are completely new. Mathematicians, researchers, engineers, designers, and students will find this work a stimulating and useful reference.


Foundations of Mathematics

Foundations of Mathematics

Author: Philip Brown

Publisher: Mercury Learning and Information

Published: 2016-03-14

Total Pages: 663

ISBN-13: 1944534415

DOWNLOAD EBOOK

Foundations of Mathematics offers the university student or interested reader a unique reference book by covering the basics of algebra, trigonometry, geometry, and calculus. There are many instances in the book to demonstrate the interplay and interconnectedness of these topics. The book presents definitions and examples throughout for clear, easy learning. Numerous exercises are included at the ends of the chapters, and readers are encouraged to complete all of them as an essential part of working through the book. It offers a unique experience for readers to understand different areas of mathematics in one clear, concise text. Instructors’ resources are available upon adoption. Features: •Covers the basics of algebra, trigonometry, geometry, and calculus •Includes all of the mathematics needed to learn calculus •Demonstrates the interplay and interconnectedness of these topics •Uses numerous examples and exercises to reinforce concepts


Uncertainty Theory

Uncertainty Theory

Author: Baoding Liu

Publisher: Springer Science & Business Media

Published: 2011-11-07

Total Pages: 350

ISBN-13: 3642139582

DOWNLOAD EBOOK

Uncertainty theory is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms. Uncertainty is any concept that satisfies the axioms of uncertainty theory. Thus uncertainty is neither randomness nor fuzziness. It is also known from some surveys that a lot of phenomena do behave like uncertainty. How do we model uncertainty? How do we use uncertainty theory? In order to answer these questions, this book provides a self-contained, comprehensive and up-to-date presentation of uncertainty theory, including uncertain programming, uncertain risk analysis, uncertain reliability analysis, uncertain process, uncertain calculus, uncertain differential equation, uncertain logic, uncertain entailment, and uncertain inference. Mathematicians, researchers, engineers, designers, and students in the field of mathematics, information science, operations research, system science, industrial engineering, computer science, artificial intelligence, finance, control, and management science will find this work a stimulating and useful reference.


Computability, Complexity, and Languages

Computability, Complexity, and Languages

Author: Martin Davis

Publisher: Academic Press

Published: 1994-02-03

Total Pages: 631

ISBN-13: 0122063821

DOWNLOAD EBOOK

This introductory text covers the key areas of computer science, including recursive function theory, formal languages, and automata. Additions to the second edition include: extended exercise sets, which vary in difficulty; expanded section on recursion theory; new chapters on program verification and logic programming; updated references and examples throughout.


Quantum Relativity

Quantum Relativity

Author: David R. Finkelstein

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 584

ISBN-13: 3642609368

DOWNLOAD EBOOK

Over the past years the author has developed a quantum language going beyond the concepts used by Bohr and Heisenberg. The simple formal algebraic language is designed to be consistent with quantum theory. It differs from natural languages in its epistemology, modal structure, logical connections, and copulatives. Starting from ideas of John von Neumann and in part also as a response to his fundamental work, the author bases his approach on what one really observes when studying quantum processes. This way the new language can be seen as a clue to a deeper understanding of the concepts of quantum physics, at the same time avoiding those paradoxes which arise when using natural languages. The work is organized didactically: The reader learns in fairly concrete form about the language and its structure as well as about its use for physics.


Algebraic Curves over a Finite Field

Algebraic Curves over a Finite Field

Author: J. W. P. Hirschfeld

Publisher: Princeton University Press

Published: 2013-03-25

Total Pages: 717

ISBN-13: 1400847419

DOWNLOAD EBOOK

This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the general theory of curves over any field, highlighting peculiarities occurring for positive characteristic and requiring of the reader only basic knowledge of algebra and geometry. The special properties that a curve over a finite field can have are then discussed. The geometrical theory of linear series is used to find estimates for the number of rational points on a curve, following the theory of Stöhr and Voloch. The approach of Hasse and Weil via zeta functions is explained, and then attention turns to more advanced results: a state-of-the-art introduction to maximal curves over finite fields is provided; a comprehensive account is given of the automorphism group of a curve; and some applications to coding theory and finite geometry are described. The book includes many examples and exercises. It is an indispensable resource for researchers and the ideal textbook for graduate students.