Single valued trapezoidal neutrosophic numbers (SVTNNs) are very useful tools for describing complex information, because of their advantage in describing the information completely, accurately and comprehensively for decision-making problems. In the paper, a method based on SVTNNs is proposed for dealing with multi-criteria group decision-making (MCGDM) problems. Firstly, the new operations SVTNNs are developed for avoiding evaluation information aggregation loss and distortion
This ninth volume of Collected Papers includes 87 papers comprising 982 pages on Neutrosophic Theory and its applications in Algebra, written between 2014-2022 by the author alone or in collaboration with the following 81 co-authors (alphabetically ordered) from 19 countries: E.O. Adeleke, A.A.A. Agboola, Ahmed B. Al-Nafee, Ahmed Mostafa Khalil, Akbar Rezaei, S.A. Akinleye, Ali Hassan, Mumtaz Ali, Rajab Ali Borzooei , Assia Bakali, Cenap Özel, Victor Christianto, Chunxin Bo, Rakhal Das, Bijan Davvaz, R. Dhavaseelan, B. Elavarasan, Fahad Alsharari, T. Gharibah, Hina Gulzar, Hashem Bordbar, Le Hoang Son, Emmanuel Ilojide, Tèmítópé Gbóláhàn Jaíyéolá, M. Karthika, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Huma Khan, Madad Khan, Mohsin Khan, Hee Sik Kim, Seon Jeong Kim, Valeri Kromov, R. M. Latif, Madeleine Al-Tahan, Mehmat Ali Ozturk, Minghao Hu, S. Mirvakili, Mohammad Abobala, Mohammad Hamidi, Mohammed Abdel-Sattar, Mohammed A. Al Shumrani, Mohamed Talea, Muhammad Akram, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Gulistan, Muhammad Shabir, G. Muhiuddin, Memudu Olaposi Olatinwo, Osman Anis, Choonkil Park, M. Parimala, Ping Li, K. Porselvi, D. Preethi, S. Rajareega, N. Rajesh, Udhayakumar Ramalingam, Riad K. Al-Hamido, Yaser Saber, Arsham Borumand Saeid, Saeid Jafari, Said Broumi, A.A. Salama, Ganeshsree Selvachandran, Songtao Shao, Seok-Zun Song, Tahsin Oner, M. Mohseni Takallo, Binod Chandra Tripathy, Tugce Katican, J. Vimala, Xiaohong Zhang, Xiaoyan Mao, Xiaoying Wu, Xingliang Liang, Xin Zhou, Yingcang Ma, Young Bae Jun, Juanjuan Zhang.
This book collects chapters which discuss interdisciplinary solutions to complex problems by using different approaches in order to save money, time and resources. The book presents the results on the recent advancements in artificial intelligence, computational intelligence, decision-making problems, emerging problems and practical achievements in the broad knowledge management field. q-ROFS is one of the hot topics for all the researchers, industrialists as well as academicians. This book is of interest to professionals and researchers working in the field of decision making and computational intelligence, as well as postgraduate and undergraduate students studying applications of fuzzy sets. The book helps solve different kinds of the decision-making problems such as medical diagnosis, pattern recognition, construction problems and technology selection under the uncertain fuzzy environment. Containing 19 chapters, the book begins by giving a topology of the q-ROFSs and their applications. It then progresses in a logical fashion, dedicating a chapter to each approach, including the generalized information measures for q-ROFSs, implementation of q-ROFSs to medical diagnosis, inventory model, multi-attribute decision-making and approaches to real-life industrial problems such as green campus transportation, social responsibility evaluation pattern and extensions of the q-ROFSs.
Fuzzy sets have experienced multiple expansions since their conception to enhance their capacity to convey complex information. Intuitionistic fuzzy sets, image fuzzy sets, q-rung orthopair fuzzy sets, and neutrosophic sets are a few of these extensions. Researchers and academics have acquired a lot of information about their theories and methods for making decisions. However, only a small number of research findings discuss how neutrosophic sets theory and their extensions (NSTEs) are used in education. The Handbook of Research on the Applications of Neutrosophic Sets Theory and Their Extensions in Education implements fresh scientific approaches to enhance the quality of decisions under neutrosophic environments, particularly within education. Covering key topics such as data modeling, educational technologies, decision making, and learning management systems, this major reference work is ideal for instructional designers, researchers, academicians, scholars, practitioners, instructors, and students.
Interval valued generalized single valued neutrosophic trapezoidal number (IVGSVTrN-number), which permits the membership degrees of an element to a set expressed with intervals rather than exact numbers, is considered to be very useful to describe uncertain information for analyzing multiple criteria decision making (MCDM) problems. In this paper, we firstly introduced the concept of IVGSVTrN-number with some operations based on neutrosophic number. Then, we presented some aggregation and geometric operators. Finally, we developed a approaches for multiple criteria group decision making problems based on the proposed operators and we applied the method to a numerical example to illustrate proposed approach.
This book addresses new concepts, methods, algorithms, modeling, and applications of green supply chain, inventory control problems, assignment problems, transportation problem, linear problems and new information related to optimization for the topic from the theoretical and applied viewpoints of neutrosophic sets and logic. The book is an innovatory of new tools and procedures, such as: Neutrosophic Statistical Tests and Dependent State Samplings, Neutrosophic Probabilistic Expert Systems, Neutrosophic HyperSoft Set, Quadripartitioned Neutrosophic Cross-Entropy, Octagonal and Spherical and Cubic Neutrosophic Numbers used in machine learning. It highlights the process of neutrosofication {which means to split the universe into three parts, two opposite ones (Truth and Falsehood), and an Indeterminate or neutral one (I) in between them}. It explains Three-Ways Decision, how the universe set is split into three different distinct areas, in regard to the decision process, representing: Acceptance, Noncommitment, and Rejection, respectively. The Three-Way Decision is used in the Neutrosophic Linguistic Rough Set, which has never been done before.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.