1. Provides a comprehensive overview of meta-analysis methods and applications. 2. Divided into four major sub-topics, covering univariate meta-analysis, multivariate, applications and policy. 3. Designed to be suitable for graduate students and researchers new to the field. 4. Includes lots of real examples, with data and software code made available. 5. Chapters written by the leading researchers in the field.
This book consists of four parts with 32 chapters adapted for four short courses, from the basic to the advanced levels of medical statistics (biostatistics), ideal for biomedical students. Part 1 is a compulsory course of Basic Statistics with descriptive statistics, parameter estimation and hypothesis test, simple correlation and regression. Part 2 is a selective course on Study Design and Implementation with sampling survey, interventional study, observational study, diagnosis study, data sorting and article writing. Part 3 is a specially curated course of Multivariate Analyses with complex analyses of variance, variety of regressions and classical multivariate analyses. Part 4 is a seminar course on Introduction to Advanced Statistical Methods with meta-analysis, time series, item response theory, structure equation model, multi-level model, bio-informatics, genetic statistics and data mining.The main body of each chapter is followed by five practical sections: Report Writing, Case Discrimination, Computer Experiments, Frequently Asked Questions and Summary, and Practice & Think. Moreover, there are 2 attached Appendices, Appendix A includes Introductions to SPSS, Excel and R respectively, and Appendix B includes all the programs, data and printouts for Computer Experiments in addition to the Tests for Review and the reference answers for Case Discrimination as well as Practice & Think..This book can be used as a textbook for biomedical students at both under- and postgraduate levels. It can also serve as an important guide for researchers, professionals and officers in the biomedical field.
This book analyzes how the choice of a particular disclosure limitation method, namely additive and multiplicative measurement error, affects the quality of the data and limits its usefulness for empirical research. Generally, a disclosure limitation method can be regarded as a data filter that transforms the true data generating process. This book focuses explicitly on the consequences of additive and multiplicative measurement error for the properties of nonlinear econometric estimators. It investigates the extent to which appropriate econometric techniques can yield consistent and unbiased estimates of the true data generating process in the case of disclosure limitation. Sandra Nolte received her PhD in Economics at the University of Konstanz, Germany in 2008 and is a postdoctoral researcher at the Financial Econometric Research Centre at the Warwick Business School, UK since 2009. Her research areas include microeconometrics and financial econometrics.
The collection of chapters in Volume 43 Part B of Advances in Econometrics serves as a tribute to one of the most innovative, influential, and productive econometricians of his generation, Professor M. Hashem Pesaran.
Significantly revised, the fifth edition of the most complete, accessible text now covers all three approaches to structural equation modeling (SEM)--covariance-based SEM, nonparametric SEM (Pearl’s structural causal model), and composite SEM (partial least squares path modeling). With increased emphasis on freely available software tools such as the R lavaan package, the text uses data examples from multiple disciplines to provide a comprehensive understanding of all phases of SEM--what to know, best practices, and pitfalls to avoid. It includes exercises with answers, rules to remember, topic boxes, and a new self-test on significance testing, regression, and psychometrics. The companion website supplies helpful primers on these topics as well as data, syntax, and output for the book's examples, in files that can be opened with any basic text editor. New to This Edition *Chapters on composite SEM, also called partial least squares path modeling or variance-based SEM; conducting SEM analyses in small samples; and recent developments in mediation analysis. *Coverage of new reporting standards for SEM analyses; piecewise SEM, also called confirmatory path analysis; comparing alternative models fitted to the same data; and issues in multiple-group SEM. *Extended tutorials on techniques for dealing with missing data in SEM and instrumental variable methods to deal with confounding of target causal effects. Pedagogical Features *New self-test of knowledge about background topics (significance testing, regression, and psychometrics) with scoring key and online primers. *End-of-chapter suggestions for further reading and exercises with answers. *Troublesome examples from real data, with guidance for handling typical problems in analyses. *Topic boxes on special issues and boxed rules to remember. *Website promoting a learn-by-doing approach, including data, extensively annotated syntax, and output files for all the book’s detailed examples.
Compliance with federal equal employment opportunity regulations, including civil rights laws and affirmative action requirements, requires collection and analysis of data on disparities in employment outcomes, often referred to as adverse impact. While most human resources (HR) practitioners are familiar with basic adverse impact analysis, the courts and regulatory agencies are increasingly relying on more sophisticated methods to assess disparities. Employment data are often complicated, and can include a broad array of employment actions (e.g., selection, pay, promotion, termination), as well as data that span multiple protected groups, settings, and points in time. In the era of "big data," the HR analyst often has access to larger and more complex data sets relevant to employment disparities. Consequently, an informed HR practitioner needs a richer understanding of the issues and methods for conducting disparity analyses. This book brings together the diverse literature on disparity analysis, spanning work from statistics, industrial/organizational psychology, human resource management, labor economics, and law, to provide a comprehensive and integrated summary of current best practices in the field. Throughout, the description of methods is grounded in the legal context and current trends in employment litigation and the practices of federal regulatory agencies. The book provides guidance on all phases of disparity analysis, including: How to structure diverse and complex employment data for disparity analysis How to conduct both basic and advanced statistical analyses on employment outcomes related to employee selection, promotion, compensation, termination, and other employment outcomes How to interpret results in terms of both practical and statistical significance Common practical challenges and pitfalls in disparity analysis and strategies to deal with these issues