Prediction of Buffet Loads Using Artificial Neural Networks

Prediction of Buffet Loads Using Artificial Neural Networks

Author: Oleg Paul Levinski

Publisher:

Published: 2001

Total Pages: 38

ISBN-13:

DOWNLOAD EBOOK

The use of artificial neural networks (ANN) for predicting the empennage buffet pressures as a function of aircraft state has been investigated. The buffet loads prediction method which is developed depends on experimental data to train the ANN alogorithm and is able to expand its knowledge base with additional data. The study confirmed that neural networks have a great potential as a method for modelling buffet data. The ability of neural networks to accurately predict magnitude and spectral content of unsteady buffet pressures was demonstrated. Bases on the ANN methodology investigated, a buffet prediction system can be developed to characterise the F/A-18 vertical tail buffet environment at different flight conditions. It will allow better understanding and more efficient alleviation of the empennage buffeting problem.


Aircraft Aerodynamic Parameter Estimation from Flight Data Using Neural Partial Differentiation

Aircraft Aerodynamic Parameter Estimation from Flight Data Using Neural Partial Differentiation

Author: Majeed Mohamed

Publisher: Springer Nature

Published: 2021-02-23

Total Pages: 66

ISBN-13: 9811601046

DOWNLOAD EBOOK

This book presents neural partial differentiation as an estimation algorithm for extracting aerodynamic derivatives from flight data. It discusses neural modeling of the aircraft system. The neural partial differentiation approach discussed in the book helps estimate parameters with their statistical information from the noisy data. Moreover, this method avoids the need for prior information about the aircraft model parameters. The objective of the book is to extend the use of the neural partial differentiation method to the multi-input multi-output aircraft system for the online estimation of aircraft parameters from an established neural model. This approach will be relevant for the design of an adaptive flight control system. The book also discusses the estimation of aerodynamic derivatives of rigid and flexible aircraft which are treated separately. The longitudinal and lateral-directional derivatives of aircraft are estimated from flight data. Besides the aerodynamic derivatives, mode shape parameters of flexible aircraft are also identified in the book as part of identification for the state space aircraft model. Since the detailed description of the approach is illustrated through the block diagram and their results are presented in tabular form with figures of parameters converge to their estimates, the contents of this book are intended for readers who want to pursue a postgraduate and doctoral degree in science and engineering. This book is useful for practicing scientists, engineers, and teachers in the field of aerospace engineering.


A Neural Network Approach to Aircraft Performance Model Forecasting

A Neural Network Approach to Aircraft Performance Model Forecasting

Author: Nicolas Vincent-Boulay

Publisher:

Published: 2020

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Performance models used in the aircraft development process are dependent on the assumptions and approximations associated with the engineering equations used to produce them. The design and implementation of these highly complex engineering models are typically associated with a longer development process. This study proposes a non-deterministic approach where machine learning techniques using Artificial Neural Networks are used to predict specific aircraft parameters using available data. The approach yields results that are independent of the equations used in conventional aircraft performance modeling methods and rely on stochastic data and its distribution to extract useful patterns. To test the viability of the approach, a case study is performed comparing a conventional performance model describing the takeoff ground roll distance with the values generated from a neural network using readily-available flight data. The neural network receives as input, and is trained using, aircraft performance parameters including atmospheric conditions (air temperature, air pressure, air density), performance characteristics (flap configuration, thrust setting, MTOW, etc.) and runway conditions (wet, dry, slope angle, etc.). The proposed predictive modeling approach can be tailored for use with a wider range of flight mission profiles such as climb, cruise, descent and landing.


Predicting General Aviation Accidents Using Machine Learning Algorithms

Predicting General Aviation Accidents Using Machine Learning Algorithms

Author: Bradley S. Baugh

Publisher:

Published: 2020

Total Pages: 542

ISBN-13:

DOWNLOAD EBOOK

"Aviation safety management is implemented through reactive, proactive, and predictive methodologies. Unlike reactive and proactive safety, predictive safety can predict the next accident and enable prevention before an actual occurrence. The study outlined here promotes predictive safety management through machine learning technologies using large amounts of data to facilitate predictive modeling. The study addresses efforts to reduce General Aviation accidents, an effort that was renewed in earnest with the Federal Aviation Administration’s 1998 Safer Skies Initiative. Over the past 22 years, the General Aviation fatality rate has decreased. However, accidents still happen, and there is some evidence showing the number of accidents, representing hazard exposure, is increasing. The accident data suggest that the aviation community still has more to learn about the variables involved in an accident sequence. The purpose of the study was to conduct an exploratory data-driven examination of General Aviation accidents in the United States from January 1, 1998, to December 31, 2018, using machine learning and data mining techniques. The goal was to determine what model best predicts fatal and severe injury aviation accidents and further, what variables were most important in the prediction model. The study sample comprised 26,387 fixed-wing general aviation accidents accessed through the publicly accessible National Transportation Safety Board Aviation Accident Database and Synopses archive. Using a mixed-methods approach, the study employed both unstructured narrative text and structured tabular data within the predictive modeling. First, the accident narratives were culled using text mining algorithms to develop text-based quantitative variables. Next, data mining algorithms were used to develop models based on both text- and data-based variables derived from the accident reports. Five types of machine learning models were created using SAS® Enterprise MinerTM, including the Decision Tree, Gradient Boosting, Logistic Regression, Neural Network, and Random Forest. Additionally, three broad sets of variables were used in modeling, including text-only, data-only, and a combination of text and data variables. Three models, Logistic Regression (text-only variables), Random Forest (text-only variables), and Gradient Boosting (text and data variables), emerged with a similar prediction capability. The top six variables within the models were all text-based covering Medical, Slow-flight and stalls, Flight control, IMC flight, Weather factors, and Flight hours topics. The Logistic Regression (Text) model was selected as the champion model: Misclassification Rate = 0.098, ROC Index = 0.945, and Cumulative Lift = 3.46. The results of the study provide insights to the entire General Aviation community, including government, industry, flight training, and the operational pilot. Specific recommendations include the following areas: 1) improve the quality and usefulness of accident reports for machine learning applications, 2) investigate ways to capture and publish more open-source flight data for use in safety modeling, 3) invest in additional medical education and find ways to address impairing medications and high risk medical conditions, 4) renew efforts on improving flight skills and combatting decision-based errors, 5) emphasize the importance of weather briefings, pre-flight planning, and weather-based risk management, and 6) create an aviation-specific corpus for text mining to improve text analysis and transformation."--Abstract.