A Knowledge Representation Practionary

A Knowledge Representation Practionary

Author: Michael K. Bergman

Publisher: Springer

Published: 2018-12-12

Total Pages: 462

ISBN-13: 3319980920

DOWNLOAD EBOOK

This major work on knowledge representation is based on the writings of Charles S. Peirce, a logician, scientist, and philosopher of the first rank at the beginning of the 20th century. This book follows Peirce's practical guidelines and universal categories in a structured approach to knowledge representation that captures differences in events, entities, relations, attributes, types, and concepts. Besides the ability to capture meaning and context, the Peircean approach is also well-suited to machine learning and knowledge-based artificial intelligence. Peirce is a founder of pragmatism, the uniquely American philosophy. Knowledge representation is shorthand for how to represent human symbolic information and knowledge to computers to solve complex questions. KR applications range from semantic technologies and knowledge management and machine learning to information integration, data interoperability, and natural language understanding. Knowledge representation is an essential foundation for knowledge-based AI. This book is structured into five parts. The first and last parts are bookends that first set the context and background and conclude with practical applications. The three main parts that are the meat of the approach first address the terminologies and grammar of knowledge representation, then building blocks for KR systems, and then design, build, test, and best practices in putting a system together. Throughout, the book refers to and leverages the open source KBpedia knowledge graph and its public knowledge bases, including Wikipedia and Wikidata. KBpedia is a ready baseline for users to bridge from and expand for their own domain needs and applications. It is built from the ground up to reflect Peircean principles. This book is one of timeless, practical guidelines for how to think about KR and to design knowledge management (KM) systems. The book is grounded bedrock for enterprise information and knowledge managers who are contemplating a new knowledge initiative. This book is an essential addition to theory and practice for KR and semantic technology and AI researchers and practitioners, who will benefit from Peirce's profound understanding of meaning and context.


Knowledge Representation and Reasoning

Knowledge Representation and Reasoning

Author: Ronald Brachman

Publisher: Morgan Kaufmann

Published: 2004-05-19

Total Pages: 414

ISBN-13: 1558609326

DOWNLOAD EBOOK

Knowledge representation is at the very core of a radical idea for understanding intelligence. This book talks about the central concepts of knowledge representation developed over the years. It is suitable for researchers and practitioners in database management, information retrieval, object-oriented systems and artificial intelligence.


Knowledge Representation, Reasoning and Declarative Problem Solving

Knowledge Representation, Reasoning and Declarative Problem Solving

Author: Chitta Baral

Publisher: Cambridge University Press

Published: 2003-01-09

Total Pages: 546

ISBN-13: 1139436449

DOWNLOAD EBOOK

Baral shows how to write programs that behave intelligently, by giving them the ability to express knowledge and to reason. This book will appeal to practising and would-be knowledge engineers wishing to learn more about the subject in courses or through self-teaching.


Practitioner's Knowledge Representation

Practitioner's Knowledge Representation

Author: Emilia Mendes

Publisher: Springer Science & Business

Published: 2014-04-23

Total Pages: 215

ISBN-13: 3642541577

DOWNLOAD EBOOK

The main goal of this book is to help organizations improve their effort estimates and effort estimation processes by providing a step-by-step methodology that takes them through the creation and validation of models that are based on their own knowledge and experience. Such models, once validated, can then be used to obtain predictions, carry out risk analyses, enhance their estimation processes for new projects and generally advance them as learning organizations. Emilia Mendes presents the Expert-Based Knowledge Engineering of Bayesian Networks (EKEBNs) methodology, which she has used and adapted during the course of several industry collaborations with different companies world-wide over more than 6 years. The book itself consists of two major parts: first, the methodology’s foundations in knowledge management, effort estimation (with special emphasis on the intricacies of software and Web development) and Bayesian networks are detailed; then six industry case studies are presented which illustrate the practical use of EKEBNs. Domain experts from each company participated in the elicitation of the bespoke models for effort estimation and all models were built employing the widely-used Netica TM tool. This part is rounded off with a chapter summarizing the experiences with the methodology and the derived models. Practitioners working on software project management, software process quality or effort estimation and risk analysis in general will find a thorough introduction into an industry-proven methodology as well as numerous experiences, tips and possible pitfalls invaluable for their daily work.


Encyclopedia of Knowledge Management, Second Edition

Encyclopedia of Knowledge Management, Second Edition

Author: Schwartz, David

Publisher: IGI Global

Published: 2010-07-31

Total Pages: 1652

ISBN-13: 1599049325

DOWNLOAD EBOOK

Knowledge Management has evolved into one of the most important streams of management research, affecting organizations of all types at many different levels. The Encyclopedia of Knowledge Management, Second Edition provides a compendium of terms, definitions and explanations of concepts, processes and acronyms addressing the challenges of knowledge management. This two-volume collection covers all aspects of this critical discipline, which range from knowledge identification and representation, to the impact of Knowledge Management Systems on organizational culture, to the significant integration and cost issues being faced by Human Resources, MIS/IT, and production departments.


Representation Learning for Natural Language Processing

Representation Learning for Natural Language Processing

Author: Zhiyuan Liu

Publisher: Springer Nature

Published: 2020-07-03

Total Pages: 319

ISBN-13: 9811555737

DOWNLOAD EBOOK

This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.


Introduction to Knowledge Systems

Introduction to Knowledge Systems

Author: Mark Stefik

Publisher: Morgan Kaufmann

Published: 1995

Total Pages: 906

ISBN-13:

DOWNLOAD EBOOK

The art of building knowledge systems is multidisciplinary, incorporating computer science theory, programming practice and psychology. This book incorporates these varied fields covering topics ranging from algorithms and representations to techniques for acquiring the task specific knowledge.


Model Rules of Professional Conduct

Model Rules of Professional Conduct

Author: American Bar Association. House of Delegates

Publisher: American Bar Association

Published: 2007

Total Pages: 216

ISBN-13: 9781590318737

DOWNLOAD EBOOK

The Model Rules of Professional Conduct provides an up-to-date resource for information on legal ethics. Federal, state and local courts in all jurisdictions look to the Rules for guidance in solving lawyer malpractice cases, disciplinary actions, disqualification issues, sanctions questions and much more. In this volume, black-letter Rules of Professional Conduct are followed by numbered Comments that explain each Rule's purpose and provide suggestions for its practical application. The Rules will help you identify proper conduct in a variety of given situations, review those instances where discretionary action is possible, and define the nature of the relationship between you and your clients, colleagues and the courts.


The Knowledge Frontier

The Knowledge Frontier

Author: Nick Cercone

Publisher: Springer Science & Business Media

Published: 1987-10-05

Total Pages: 558

ISBN-13: 9780387965574

DOWNLOAD EBOOK

Knowledge representation is perhaps the most central problem confronting artificial intelligence. Expert systems need knowledge of their domain of expertise in order to function properly. Computer vlslOn systems need to know characteristics of what they are "seeing" in order to be able to fully interpret scenes. Natural language systems are invaluably aided by knowledge of the subject of the natural language discourse and knowledge of the participants in the discourse. Knowledge can guide learning systems towards better understanding and can aid problem solving systems in creating plans to solve various problems. Applications such as intelligent tutoring. computer-aided VLSI design. game playing. automatic programming. medical reasoning. diagnosis in various domains. and speech recogOltlOn. to name a few. are all currently experimenting with knowledge-based approaches. The problem of knowledge representation breaks down into several subsidiary problems including what knowledge to represent in a particular application. how to extract or create that knowledge. how to represent the knowledge efficiently and effectively. how to implement the knowledge representation scheme chosen. how to modify the knowledge in the face of a changing world. how to reason with the knowledge. and how tc use the knowledge appropriately in the creation of the application solution. This volume contains an elaboration of many of these basic issues from a variety of perspectives.