Standard medicinal chemistry courses and texts are organized by classes of drugs with an emphasis on descriptions of their biological and pharmacological effects. This book represents a new approach based on physical organic chemical principles and reaction mechanisms that allow the reader to extrapolate to many related classes of drug molecules. The Second Edition reflects the significant changes in the drug industry over the past decade, and includes chapter problems and other elements that make the book more useful for course instruction. - New edition includes new chapter problems and exercises to help students learn, plus extensive references and illustrations - Clearly presents an organic chemist's perspective of how drugs are designed and function, incorporating the extensive changes in the drug industry over the past ten years - Well-respected author has published over 200 articles, earned 21 patents, and invented a drug that is under consideration for commercialization
The Practice of Medicinal Chemistry, Fourth Edition provides a practical and comprehensive overview of the daily issues facing pharmaceutical researchers and chemists. In addition to its thorough treatment of basic medicinal chemistry principles, this updated edition has been revised to provide new and expanded coverage of the latest technologies and approaches in drug discovery.With topics like high content screening, scoring, docking, binding free energy calculations, polypharmacology, QSAR, chemical collections and databases, and much more, this book is the go-to reference for all academic and pharmaceutical researchers who need a complete understanding of medicinal chemistry and its application to drug discovery and development. - Includes updated and expanded material on systems biology, chemogenomics, computer-aided drug design, and other important recent advances in the field - Incorporates extensive color figures, case studies, and practical examples to help users gain a further understanding of key concepts - Provides high-quality content in a comprehensive manner, including contributions from international chapter authors to illustrate the global nature of medicinal chemistry and drug development research - An image bank is available for instructors at www.textbooks.elsevier.com
Medicinal chemistry is a complex topic. Written in an easy to follow and conversational style, Basic Concepts in Medicinal Chemistry focuses on the fundamental concepts that govern the discipline of medicinal chemistry as well as how and why these concepts are essential to therapeutic decisions. The book emphasizes functional group analysis and the basics of drug structure evaluation. In a systematic fashion, learn how to identify and evaluate the functional groups that comprise the structure of a drug molecule and their influences on solubility, absorption, acid/base character, binding interactions, and stereochemical orientation. Relevant Phase I and Phase II metabolic transformations are also discussed for each functional group. Key features include: • Discussions on the roles and characteristics of organic functional groups, including the identification of acidic and basic functional groups. • How to solve problems involving pH, pKa, and ionization; salts and solubility; drug binding interactions; stereochemistry; and drug metabolism. • Numerous examples and expanded discussions for complex concepts. • Therapeutic examples that link the importance of medicinal chemistry to pharmacy and healthcare practice. • An overview of structure activity relationships (SARs) and concepts that govern drug design. • Review questions and practice problems at the end of each chapter that allow readers to test their understanding, with the answers provided in an appendix. Whether you are just starting your education toward a career in a healthcare field or need to brush up on your organic chemistry concepts, this book is here to help you navigate medicinal chemistry. About the Authors Marc W. Harrold, BS, Pharm, PhD, is Professor of Medicinal Chemistry at the Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA. Professor Harrold is the 2011 winner of the Omicron Delta Kappa "Teacher of the Year" award at Duquesne University. He is also the two-time winner of the "TOPS" (Teacher of the Pharmacy School) award at the Mylan School of Pharmacy. Robin M. Zavod, PhD, is Associate Professor for Pharmaceutical Sciences at the Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, where she was awarded the 2012 Outstanding Faculty of the Year award. Professor Zavod also serves on the adjunct faculty for Elmhurst College and the Illinois Institute of Technology. She currently serves as Editor-in-Chief of the journal Currents in Pharmacy Teaching and Learning.
Basic Principles of Drug Discovery and Development presents the multifaceted process of identifying a new drug in the modern era, which requires a multidisciplinary team approach with input from medicinal chemists, biologists, pharmacologists, drug metabolism experts, toxicologists, clinicians, and a host of experts from numerous additional fields. Enabling technologies such as high throughput screening, structure-based drug design, molecular modeling, pharmaceutical profiling, and translational medicine are critical to the successful development of marketable therapeutics. Given the wide range of disciplines and techniques that are required for cutting edge drug discovery and development, a scientist must master their own fields as well as have a fundamental understanding of their collaborator's fields. This book bridges the knowledge gaps that invariably lead to communication issues in a new scientist's early career, providing a fundamental understanding of the various techniques and disciplines required for the multifaceted endeavor of drug research and development. It provides students, new industrial scientists, and academics with a basic understanding of the drug discovery and development process. The fully updated text provides an excellent overview of the process and includes chapters on important drug targets by class, in vitro screening methods, medicinal chemistry strategies in drug design, principles of in vivo pharmacokinetics and pharmacodynamics, animal models of disease states, clinical trial basics, and selected business aspects of the drug discovery process. - Provides a clear explanation of how the pharmaceutical industry works, as well as the complete drug discovery and development process, from obtaining a lead, to testing the bioactivity, to producing the drug, and protecting the intellectual property - Includes a new chapter on the discovery and development of biologics (antibodies proteins, antibody/receptor complexes, antibody drug conjugates), a growing and important area of the pharmaceutical industry landscape - Features a new section on formulations, including a discussion of IV formulations suitable for human clinical trials, as well as the application of nanotechnology and the use of transdermal patch technology for drug delivery - Updated chapter with new case studies includes additional modern examples of drug discovery through high through-put screening, fragment-based drug design, and computational chemistry
Burger’s Medicinal Chemistry, Drug Discovery and Development Explore the freshly updated flagship reference for medicinal chemists and pharmaceutical professionals The newly revised eighth edition of the eight-volume Burger’s Medicinal Chemistry, Drug Discovery and Development is the latest installment in this celebrated series covering the entirety of the drug development and discovery process. With the addition of expert editors in each subject area, this eight-volume set adds 35 chapters to the extensive existing chapters. New additions include analyses of opioid addiction treatments, antibody and gene therapy for cancer, blood-brain barrier, HIV treatments, and industrial-academic collaboration structures. Along with the incorporation of practical material on drug hunting, the set features sections on drug discovery, drug development, cardiovascular diseases, metabolic diseases, immunology, cancer, anti-Infectives, and CNS disorders. The text continues the legacy of previous volumes in the series by providing recognized, renowned, authoritative, and comprehensive information in the area of drug discovery and development while adding cutting-edge new material on issues like the use of artificial intelligence in medicinal chemistry. Included: Volume 1: Methods in Drug Discovery, edited by Kent D. Stewart Volume 2: Discovering Lead Molecules, edited by Kent D. Stewart Volume 3: Drug Development, edited by Ramnarayan S. Randad and Michael Myers Volume 4: Cardiovascular, Endocrine, and Metabolic Diseases, edited by Scott D. Edmondson Volume 5: Pulmonary, Bone, Immunology, Vitamins, and Autocoid Therapeutic Agents, edited by Bryan H. Norman Volume 6: Cancer, edited by Barry Gold and Donna M. Huryn Volume 7: Anti-Infectives, edited by Roland E. Dolle Volume 8: CNS Disorders, edited by Richard A. Glennon Perfect for research departments in the pharmaceutical and biotechnology industries, Burger’s Medicinal Chemistry, Drug Discovery and Development can be used by graduate students seeking a one-stop reference for drug development and discovery and deserves its place in the libraries of biomedical research institutes, medical, pharmaceutical, and veterinary schools.
Drug discovery is a constantly developing and expanding area of research. Developed to provide a comprehensive guide, the Handbook of Medicinal Chemistry covers the past, present and future of the entire drug development process. Highlighting the recent successes and failures in drug discovery, the book helps readers to understand the factors governing modern drug discovery from the initial concept through to a marketed medicine. With chapters covering a wide range of topics from drug discovery processes and optimization, development of synthetic routes, pharmaceutical properties and computational biology, the handbook aims to enable medicinal chemists to apply their academic understanding to every aspect of drug discovery. Each chapter includes expert advice to not only provide a rigorous understanding of the principles being discussed, but to provide useful hints and tips gained from within the pharmaceutical industry. This expertise, combined with project case studies, highlighting and discussing all areas of successful projects, make this an essential handbook for all those involved in pharmaceutical development.
Pharmaceutical analysis determines the purity, concentration, active compounds, shelf life, rate of absorption in the body, identity, stability, rate of release etc. of a drug. Testing a pharmaceutical product involves a variety of chemical, physical and microbiological analyses. It is reckoned that over £10 billion is spent annually in the UK alone on pharmaceutical analysis, and the analytical processes described in this book are used in industries as diverse as food, beverages, cosmetics, detergents, metals, paints, water, agrochemicals, biotechnological products and pharmaceuticals. This is the key textbook in pharmaceutical analysis, now revised and updated for its fourth edition. Worked calculation examples Self-assessment Additional problems (self tests) Practical boxes Key points boxes New chapter on electrochemical biosensors. New chapter on the quality control of biotechnologically produced drugs. Extended chapter on molecular emission spectroscopy. Now comes with an e-book on StudentConsult. Self-assessment is interactive in the accompanying online e-book. 65 online animations show concepts such as ionization partitioning of drug molecules etc. ~
Pharmaceutical process research and development is an exacting, multidisciplinary effort but a somewhat neglected discipline in the chemical curriculum. This book presents an overview of the many facets of process development and how recent advances in synthetic organic chemistry, process technology and chemical engineering have impacted on the manufacture of pharmaceuticals. In 15 concise chapters the book covers such diverse subjects as route selection and economics, the interface with medicinal chemistry, the impact of green chemistry, safety, the crucial role of physical organic measurements in gaining a deeper understanding of chemical behaviour, the role of the analyst, new tools and innovations in reactor design, purification and separation, solid state chemistry and its role in formulation. The book ends with an assessment of future trends and challenges. The book provides a valuable overview of: both early and late stage chemical development, how safe and scaleable synthetic routes are designed, selected and developed, the importance of the chemical engineering, analytical and manufacturing interfaces, the key enabling technologies, including catalysis and biocatalysis, the importance of the green chemical perspective and solid form issues. The book, written and edited by experts in the field, is a contemporary, holistic treatise, with a logical sequence for process development and mini-case histories within the chapters to bring alive different aspects of the process. It is completely pharmaceutical themed, encompassing all essential aspects, from route and reagent selection to manufacture of the active compound. The book is aimed at both graduates and postgraduates interested in a career in the pharmaceutical industry. It informs them about the breadth of the work carried out in chemical research and development departments, and gives them a feel for the challenges involved in the job. The book is also of value to academics who often understand the drug discovery arena, but have far less appreciation of the drug development area, and are thus unable to advise their students about the relative merits of careers in chemical development versus discovery.