The main aim of this book is to present recent ideas in logic centered around the notion of a consequence operation. We wish to show these ideas in a factually and materially connected way, i.e., in the form of a consistent theory derived from several simple assumptions and definitions. These ideas have arisen in many research centers. The thorough study of their history can certainly be an exciting task for the historian of logic; in the book this aspect of the theory is being played down. The book belongs to abstract algebraic logic, the area of research that explores to a large extent interconnections between algebra and logic. The results presented here concern logics defined in zero-order languages (Le., quantifier-free sentential languages without predicate symbols). The reach of the theory expounded in the book is, in fact, much wider. The theory is also valid for logics defined in languages of higer orders. The problem of transferring the theory to the level of first-order languages has been satisfactorily solved and new ideas within this area have been put forward in the work of Blok and Pigozzi [1989].
This book gives a comprehensive introduction to Universal Algebraic Logic. The three main themes are (i) universal logic and the question of what logic is, (ii) duality theories between the world of logics and the world of algebra, and (iii) Tarskian algebraic logic proper including algebras of relations of various ranks, cylindric algebras, relation algebras, polyadic algebras and other kinds of algebras of logic. One of the strengths of our approach is that it is directly applicable to a wide range of logics including not only propositional logics but also e.g. classical first order logic and other quantifier logics. Following the Tarskian tradition, besides the connections between logic and algebra, related logical connections with geometry and eventually spacetime geometry leading up to relativity are also part of the perspective of the book. Besides Tarskian algebraizations of logics, category theoretical perspectives are also touched upon. This book, apart from being a monograph containing state of the art results in algebraic logic, can be used as the basis for a number of different courses intended for both novices and more experienced students of logic, mathematics, or philosophy. For instance, the first two chapters can be used in their own right as a crash course in Universal Algebra.
It is with great pleasure that we are presenting to the community the second edition of this extraordinary handbook. It has been over 15 years since the publication of the first edition and there have been great changes in the landscape of philosophical logic since then. The first edition has proved invaluable to generations of students and researchers in formal philosophy and language, as weIl as to consumers of logic in many applied areas. The main logic artiele in the Encyelopaedia Britannica 1999 has described the first edition as 'the best starting point for exploring any of the topics in logic'. We are confident that the second edition will prove to be just as good. ! The first edition was the second handbook published for the logic commu nity. It followed the North Holland one volume Handbook 0/ Mathematical Logic, published in 1977, edited by the late Jon Barwise. The four volume Handbook 0/ Philosophical Logic, published 1983-1989 came at a fortunate at the evolution of logic. This was the time when logic temporal junction was gaining ground in computer science and artificial intelligence cireles. These areas were under increasing commercial pressure to provide devices which help andjor replace the human in his daily activity. This pressure required the use of logic in the modelling of human activity and organisa tion on the one hand and to provide the theoretical basis for the computer program constructs on the other.
FoLLI-LNCS is the publication platform for the Association of Logic, Language and Information (FoLLI, www.folli.org). The Association was founded in 1991 to advance research and education on the interface between logic, linguistics, computer science, and cognitive science. The FoLLI Publications on Logic, Language and Information aim to disseminate results of cutting-edge research and tutorial materials in these interdisciplinary areas. This LNCS volume is part of FoLLi book serie and contains the papers presented at the 5th International Workshop on Logic, Rationality and Interaction/ (LORI-V), held in October 2015 in Taipei, Taiwan. The topics covered in this program well represent the span and depth that hasby now become a trademark of the LORI workshop series, where logic interfaceswith disciplines as diverse as game theory and decision theory, philosophyand epistemology, linguistics, computer science and artificial intelligence.
This book celebrates the work of Don Pigozzi on the occasion of his 80th birthday. In addition to articles written by leading specialists and his disciples, it presents Pigozzi’s scientific output and discusses his impact on the development of science. The book both catalogues his works and offers an extensive profile of Pigozzi as a person, sketching the most important events, not only related to his scientific activity, but also from his personal life. It reflects Pigozzi's contribution to the rise and development of areas such as abstract algebraic logic (AAL), universal algebra and computer science, and introduces new scientific results. Some of the papers also present chronologically ordered facts relating to the development of the disciplines he contributed to, especially abstract algebraic logic. The book offers valuable source material for historians of science, especially those interested in history of mathematics and logic.
This comprehensive text demonstrates how various notions of logic can be viewed as notions of universal algebra. It is aimed primarily for logisticians in mathematics, philosophy, computer science and linguistics with an interest in algebraic logic, but is also accessible to those from a non-logistics background. It is suitable for researchers, graduates and advanced undergraduates who have an introductory knowledge of algebraic logic providing more advanced concepts, as well as more theoretical aspects. The main theme is that standard algebraic results (representations) translate into standard logical results (completeness). Other themes involve identification of a class of algebras appropriate for classical and non-classical logic studies, including: gaggles, distributoids, partial- gaggles, and tonoids. An imporatant sub title is that logic is fundamentally information based, with its main elements being propositions, that can be understood as sets of information states. Logics are considered in various senses e.g. systems of theorems, consequence relations and, symmetric consequence relations.
This special book is dedicated to the memory of Professor Zdzisław Pawlak, the father of rough set theory, in order to commemorate both the 10th anniversary of his passing and 35 years of rough set theory. The book consists of 20 chapters distributed into four sections, which focus in turn on a historical review of Professor Zdzisław Pawlak and rough set theory; a review of the theory of rough sets; the state of the art of rough set theory; and major developments in rough set based data mining approaches. Apart from Professor Pawlak’s contributions to rough set theory, other areas he was interested in are also included. Moreover, recent theoretical studies and advances in applications are also presented. The book will offer a useful guide for researchers in Knowledge Engineering and Data Mining by suggesting new approaches to solving the problems they encounter.
This volume celebrates the work of Petr Hájek on mathematical fuzzy logic and presents how his efforts have influenced prominent logicians who are continuing his work. The book opens with a discussion on Hájek's contribution to mathematical fuzzy logic and with a scientific biography of him, progresses to include two articles with a foundation flavour, that demonstrate some important aspects of Hájek's production, namely, a paper on the development of fuzzy sets and another paper on some fuzzy versions of set theory and arithmetic. Articles in the volume also focus on the treatment of vagueness, building connections between Hájek's favorite fuzzy logic and linguistic models of vagueness. Other articles introduce alternative notions of consequence relation, namely, the preservation of truth degrees, which is discussed in a general context, and the differential semantics. For the latter, a surprisingly strong standard completeness theorem is proved. Another contribution also looks at two principles valid in classical logic and characterize the three main t-norm logics in terms of these principles. Other articles, with an algebraic flavour, offer a summary of the applications of lattice ordered-groups to many-valued logic and to quantum logic, as well as an investigation of prelinearity in varieties of pointed lattice ordered algebras that satisfy a weak form of distributivity and have a very weak implication. The last part of the volume contains an article on possibilistic modal logics defined over MTL chains, a topic that Hájek discussed in his celebrated work, Metamathematics of Fuzzy Logic, and another one where the authors, besides offering unexpected premises such as proposing to call Hájek's basic fuzzy logic HL, instead of BL, propose a very weak system, called SL as a candidate for the role of the really basic fuzzy logic. The paper also provides a generalization of the prelinearity axiom, which was investigated by Hájek in the context of fuzzy logic.