A First Course in Numerical Analysis

A First Course in Numerical Analysis

Author: Anthony Ralston

Publisher: Courier Corporation

Published: 2001-01-01

Total Pages: 644

ISBN-13: 9780486414546

DOWNLOAD EBOOK

Outstanding text, oriented toward computer solutions, stresses errors in methods and computational efficiency. Problems — some strictly mathematical, others requiring a computer — appear at the end of each chapter.


A First Course in the Numerical Analysis of Differential Equations

A First Course in the Numerical Analysis of Differential Equations

Author: A. Iserles

Publisher: Cambridge University Press

Published: 2009

Total Pages: 481

ISBN-13: 0521734908

DOWNLOAD EBOOK

lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.


Numerical Methods in Scientific Computing

Numerical Methods in Scientific Computing

Author: Germund Dahlquist

Publisher: SIAM

Published: 2008-01-01

Total Pages: 742

ISBN-13: 0898717787

DOWNLOAD EBOOK

This new book from the authors of the classic book Numerical methods addresses the increasingly important role of numerical methods in science and engineering. More cohesive and comprehensive than any other modern textbook in the field, it combines traditional and well-developed topics with other material that is rarely found in numerical analysis texts, such as interval arithmetic, elementary functions, operator series, convergence acceleration, and continued fractions. Although this volume is self-contained, more comprehensive treatments of matrix computations will be given in a forthcoming volume. A supplementary Website contains three appendices: an introduction to matrix computations; a description of Mulprec, a MATLAB multiple precision package; and a guide to literature, algorithms, and software in numerical analysis. Review questions, problems, and computer exercises are also included. For use in an introductory graduate course in numerical analysis and for researchers who use numerical methods in science and engineering.


Fundamentals of Engineering Numerical Analysis

Fundamentals of Engineering Numerical Analysis

Author: Parviz Moin

Publisher: Cambridge University Press

Published: 2010-08-23

Total Pages: 257

ISBN-13: 1139489550

DOWNLOAD EBOOK

Since the original publication of this book, available computer power has increased greatly. Today, scientific computing is playing an ever more prominent role as a tool in scientific discovery and engineering analysis. In this second edition, the key addition is an introduction to the finite element method. This is a widely used technique for solving partial differential equations (PDEs) in complex domains. This text introduces numerical methods and shows how to develop, analyse, and use them. Complete MATLAB programs for all the worked examples are now available at www.cambridge.org/Moin, and more than 30 exercises have been added. This thorough and practical book is intended as a first course in numerical analysis, primarily for new graduate students in engineering and physical science. Along with mastering the fundamentals of numerical methods, students will learn to write their own computer programs using standard numerical methods.


A First Course in Computational Physics

A First Course in Computational Physics

Author: Paul DeVries

Publisher: Jones & Bartlett Learning

Published: 2011-01-28

Total Pages: 445

ISBN-13: 076377314X

DOWNLOAD EBOOK

Computers and computation are extremely important components of physics and should be integral parts of a physicist’s education. Furthermore, computational physics is reshaping the way calculations are made in all areas of physics. Intended for the physics and engineering students who have completed the introductory physics course, A First Course in Computational Physics, Second Edition covers the different types of computational problems using MATLAB with exercises developed around problems of physical interest. Topics such as root finding, Newton-Cotes integration, and ordinary differential equations are included and presented in the context of physics problems. A few topics rarely seen at this level such as computerized tomography, are also included. Within each chapter, the student is led from relatively elementary problems and simple numerical approaches through derivations of more complex and sophisticated methods, often culminating in the solution to problems of significant difficulty. The goal is to demonstrate how numerical methods are used to solve the problems that physicists face. Read the review published in Computing in Science & Engineering magazine, March/April 2011 (Vol. 13, No. 2) ? 2011 IEEE, Published by the IEEE Computer Society


An Introduction to Programming and Numerical Methods in MATLAB

An Introduction to Programming and Numerical Methods in MATLAB

Author: Steve Otto

Publisher: Springer Science & Business Media

Published: 2005-12-06

Total Pages: 469

ISBN-13: 1846281334

DOWNLOAD EBOOK

An elementary first course for students in mathematics and engineering Practical in approach: examples of code are provided for students to debug, and tasks – with full solutions – are provided at the end of each chapter Includes a glossary of useful terms, with each term supported by an example of the syntaxes commonly encountered


A First Course in Ordinary Differential Equations

A First Course in Ordinary Differential Equations

Author: Martin Hermann

Publisher: Springer Science & Business

Published: 2014-04-22

Total Pages: 300

ISBN-13: 8132218353

DOWNLOAD EBOOK

This book presents a modern introduction to analytical and numerical techniques for solving ordinary differential equations (ODEs). Contrary to the traditional format—the theorem-and-proof format—the book is focusing on analytical and numerical methods. The book supplies a variety of problems and examples, ranging from the elementary to the advanced level, to introduce and study the mathematics of ODEs. The analytical part of the book deals with solution techniques for scalar first-order and second-order linear ODEs, and systems of linear ODEs—with a special focus on the Laplace transform, operator techniques and power series solutions. In the numerical part, theoretical and practical aspects of Runge-Kutta methods for solving initial-value problems and shooting methods for linear two-point boundary-value problems are considered. The book is intended as a primary text for courses on the theory of ODEs and numerical treatment of ODEs for advanced undergraduate and early graduate students. It is assumed that the reader has a basic grasp of elementary calculus, in particular methods of integration, and of numerical analysis. Physicists, chemists, biologists, computer scientists and engineers whose work involves solving ODEs will also find the book useful as a reference work and tool for independent study. The book has been prepared within the framework of a German–Iranian research project on mathematical methods for ODEs, which was started in early 2012.