Second edition of a widely-used textbook providing the first step into general relativity for undergraduate students with minimal mathematical background.
This textbook develops general relativity and its associated mathematics from a minimum of prerequisites, leading to a physical understanding of the theory in some depth.
This comprehensive student manual has been designed to accompany the leading textbook by Bernard Schutz, A First Course in General Relativity, and uses detailed solutions, cross-referenced to several introductory and more advanced textbooks, to enable self-learners, undergraduates and postgraduates to master general relativity through problem solving. The perfect accompaniment to Schutz's textbook, this manual guides the reader step-by-step through over 200 exercises, with clear easy-to-follow derivations. It provides detailed solutions to almost half of Schutz's exercises, and includes 125 brand new supplementary problems that address the subtle points of each chapter. It includes a comprehensive index and collects useful mathematical results, such as transformation matrices and Christoffel symbols for commonly studied spacetimes, in an appendix. Supported by an online table categorising exercises, a Maple worksheet and an instructors' manual, this text provides an invaluable resource for all students and instructors using Schutz's textbook.
"Wald's book is clearly the first textbook on general relativity with a totally modern point of view; and it succeeds very well where others are only partially successful. The book includes full discussions of many problems of current interest which are not treated in any extant book, and all these matters are considered with perception and understanding."—S. Chandrasekhar "A tour de force: lucid, straightforward, mathematically rigorous, exacting in the analysis of the theory in its physical aspect."—L. P. Hughston, Times Higher Education Supplement "Truly excellent. . . . A sophisticated text of manageable size that will probably be read by every student of relativity, astrophysics, and field theory for years to come."—James W. York, Physics Today
Suitable for a one-semester course in general relativity for senior undergraduates or beginning graduate students, this text clarifies the mathematical aspects of Einstein's theory of relativity without sacrificing physical understanding.
This is a book about physics, written for mathematicians. The readers we have in mind can be roughly described as those who: I. are mathematics graduate students with some knowledge of global differential geometry 2. have had the equivalent of freshman physics, and find popular accounts of astrophysics and cosmology interesting 3. appreciate mathematical elarity, but are willing to accept physical motiva tions for the mathematics in place of mathematical ones 4. are willing to spend time and effort mastering certain technical details, such as those in Section 1. 1. Each book disappoints so me readers. This one will disappoint: 1. physicists who want to use this book as a first course on differential geometry 2. mathematicians who think Lorentzian manifolds are wholly similar to Riemannian ones, or that, given a sufficiently good mathematical back ground, the essentials of a subject !ike cosmology can be learned without so me hard work on boring detaiis 3. those who believe vague philosophical arguments have more than historical and heuristic significance, that general relativity should somehow be "proved," or that axiomatization of this subject is useful 4. those who want an encyclopedic treatment (the books by Hawking-Ellis [1], Penrose [1], Weinberg [1], and Misner-Thorne-Wheeler [I] go further into the subject than we do; see also the survey article, Sachs-Wu [1]). 5. mathematicians who want to learn quantum physics or unified fieId theory (unfortunateIy, quantum physics texts all seem either to be for physicists, or merely concerned with formaI mathematics).
Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.
A straightforward, enjoyable guide to the mathematics of Einstein's relativity To really understand Einstein's theory of relativity – one of the cornerstones of modern physics – you have to get to grips with the underlying mathematics. This self-study guide is aimed at the general reader who is motivated to tackle that not insignificant challenge. With a user-friendly style, clear step-by-step mathematical derivations, many fully solved problems and numerous diagrams, this book provides a comprehensive introduction to a fascinating but complex subject. For those with minimal mathematical background, the first chapter gives a crash course in foundation mathematics. The reader is then taken gently by the hand and guided through a wide range of fundamental topics, including Newtonian mechanics; the Lorentz transformations; tensor calculus; the Einstein field equations; the Schwarzschild solution (which gives a good approximation of the spacetime of our Solar System); simple black holes, relativistic cosmology and gravitational waves. Special relativity helps explain a huge range of non-gravitational physical phenomena and has some strangely counter-intuitive consequences. These include time dilation, length contraction, the relativity of simultaneity, mass-energy equivalence and an absolute speed limit. General relativity, the leading theory of gravity, is at the heart of our understanding of cosmology and black holes. "I must observe that the theory of relativity resembles a building consisting of two separate stories, the special theory and the general theory. The special theory, on which the general theory rests, applies to all physical phenomena with the exception of gravitation; the general theory provides the law of gravitation and its relations tothe other forces of nature." – Albert Einstein, 1919 Understand even the basics of Einstein's amazing theory and the world will never seem the same again. Contents: Preface Introduction 1 Foundation mathematics 2 Newtonian mechanics 3 Special relativity 4 Introducing the manifold 5 Scalars, vectors, one-forms and tensors 6 More on curvature 7 General relativity 8 The Newtonian limit 9 The Schwarzschild metric 10 Schwarzschild black holes 11 Cosmology 12 Gravitational waves Appendix: The Riemann curvature tensor Bibliography Acknowledgements January 2019. This third edition has been revised to make the material even more accessible to the enthusiastic general reader who seeks to understand the mathematics of relativity.
The theory of relativity is tackled directly in this book, dispensing with the need to establish the insufficiency of Newtonian mechanics. This book takes advantage from the start of the geometrical nature of the relativity theory. The reader is assumed to be familiar with vector calculus in ordinary three-dimensional Euclidean space.