Oehlert's text is suitable for either a service course for non-statistics graduate students or for statistics majors. Unlike most texts for the one-term grad/upper level course on experimental design, Oehlert's new book offers a superb balance of both analysis and design, presenting three practical themes to students: • when to use various designs • how to analyze the results • how to recognize various design options Also, unlike other older texts, the book is fully oriented toward the use of statistical software in analyzing experiments.
This bestselling professional reference has helped over 100,000 engineers and scientists with the success of their experiments. The new edition includes more software examples taken from the three most dominant programs in the field: Minitab, JMP, and SAS. Additional material has also been added in several chapters, including new developments in robust design and factorial designs. New examples and exercises are also presented to illustrate the use of designed experiments in service and transactional organizations. Engineers will be able to apply this information to improve the quality and efficiency of working systems.
Most of the classic DOE books were written before DOE software was generally available, so the technical level that they assumed was that of the engineer or scientist who had to write his or her own analysis software. In this practical introduction to DOE, guided by the capabilities of the common software packages, Paul Mathews presents the basic types and methods of designed experiments appropriate for engineers, scientists, quality engineers, and Six Sigma Black Belts and Master Black Belts. Although instructions in the use of Minitab are detailed enough to provide effective guidance to a new Minitab user, the book is still general enough to be very helpful to users of other DOE software packages. Every chapter contains many examples with detailed solutions including extensive output from Minitab.
The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: –The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops –Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R –How to access R’s thousands of functions, libraries, and data sets –How to draw valid and useful conclusions from your data –How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.
Many products, such as foods, personal-care products, beverages, and cleaning agents, are made by mixing ingredients together. This book describes a systematic methodology for formulating such products so that they perform according to one's goals, providing scientists and engineers with a fast track to the implementation of the methodology. Experimental Design for Formulation contains examples from a wide variety of fields and includes a discussion of how to design experiments for a mixture setting and how to fit and interpret models in a mixture setting. It also introduces process variables, the combining of mixture and nonmixture variables in a designed experiment, and the concept of collinearity and the possible problems that can result from its presence. Experimental Design for Formulation is a useful manual for the formulator and can also be used by a resident statistician to teach an in-house short course. Statistical proofs are largely absent, and the formulas that are presented are included to explain how the various software packages carry out the analysis. Many examples are given of output from statistical software packages, and the proper interpretation of computer output is emphasized. Other topics presented include a discussion of an effect in a mixture setting, the presentation of elementary optimization methods, and multiple-response optimization wherein one seeks to optimize more than one response.
Introducing the tools of statistics and probability from the ground up An understanding of statistical tools is essential for engineers and scientists who often need to deal with data analysis over the course of their work. Statistics and Probability with Applications for Engineers and Scientists walks readers through a wide range of popular statistical techniques, explaining step-by-step how to generate, analyze, and interpret data for diverse applications in engineering and the natural sciences. Unique among books of this kind, Statistics and Probability with Applications for Engineers and Scientists covers descriptive statistics first, then goes on to discuss the fundamentals of probability theory. Along with case studies, examples, and real-world data sets, the book incorporates clear instructions on how to use the statistical packages Minitab® and Microsoft® Office Excel® to analyze various data sets. The book also features: • Detailed discussions on sampling distributions, statistical estimation of population parameters, hypothesis testing, reliability theory, statistical quality control including Phase I and Phase II control charts, and process capability indices • A clear presentation of nonparametric methods and simple and multiple linear regression methods, as well as a brief discussion on logistic regression method • Comprehensive guidance on the design of experiments, including randomized block designs, one- and two-way layout designs, Latin square designs, random effects and mixed effects models, factorial and fractional factorial designs, and response surface methodology • A companion website containing data sets for Minitab and Microsoft Office Excel, as well as JMP ® routines and results Assuming no background in probability and statistics, Statistics and Probability with Applications for Engineers and Scientists features a unique, yet tried-and-true, approach that is ideal for all undergraduate students as well as statistical practitioners who analyze and illustrate real-world data in engineering and the natural sciences.
Achieve Technological Advancements in Applied Science and Engineering Using Efficient Experiments That Consume the Least Amount of ResourcesWritten by longtime experimental design guru Thomas B. Barker and experimental development/Six Sigma expert Andrew Milivojevich, Quality by Experimental Design, Fourth Edition shows how to design and analyze ex