Large Strain Finite Element Method

Large Strain Finite Element Method

Author: Antonio A. Munjiza

Publisher: John Wiley & Sons

Published: 2015-02-16

Total Pages: 486

ISBN-13: 1118405307

DOWNLOAD EBOOK

An introductory approach to the subject of large strains and large displacements in finite elements. Large Strain Finite Element Method: A Practical Course, takes an introductory approach to the subject of large strains and large displacements in finite elements and starts from the basic concepts of finite strain deformability, including finite rotations and finite displacements. The necessary elements of vector analysis and tensorial calculus on the lines of modern understanding of the concept of tensor will also be introduced. This book explains how tensors and vectors can be described using matrices and also introduces different stress and strain tensors. Building on these, step by step finite element techniques for both hyper and hypo-elastic approach will be considered. Material models including isotropic, unisotropic, plastic and viscoplastic materials will be independently discussed to facilitate clarity and ease of learning. Elements of transient dynamics will also be covered and key explicit and iterative solvers including the direct numerical integration, relaxation techniques and conjugate gradient method will also be explored. This book contains a large number of easy to follow illustrations, examples and source code details that facilitate both reading and understanding. Takes an introductory approach to the subject of large strains and large displacements in finite elements. No prior knowledge of the subject is required. Discusses computational methods and algorithms to tackle large strains and teaches the basic knowledge required to be able to critically gauge the results of computational models. Contains a large number of easy to follow illustrations, examples and source code details. Accompanied by a website hosting code examples.


A Finite Element Formulation for Problems of Large Strain and Large Displacement

A Finite Element Formulation for Problems of Large Strain and Large Displacement

Author: Hugh D. Hibbitt

Publisher:

Published: 1969

Total Pages: 36

ISBN-13:

DOWNLOAD EBOOK

An incremental and piecewise linear finite element theory is developed for the large displacement, large strain regime with particular reference to elastic-plastic behavior in metals. The resulting equations, though more complex, are in a similar form to those previously developed for large displacement, small strain problems, the only additional term being an initial load stiffness matrix which is dependent on current loads. This similarity in form means that existing nonlinear general purpose programs may easily be extended to include finite strains. A large displacement, small strain formulation (as applicable to problems of structural stability) is obtained from this theory by assuming that changes in length of line elements and relative rotation of orthogonal line elements are negligible compared to unity. The simplified equations are in essential agreement with previous formulations in the literature. The only difference which is observed is the persistence of the initial load stiffness matrix, which may be significant in some cases. (Author).


Nonlinear Finite Element Analysis of Solids and Structures

Nonlinear Finite Element Analysis of Solids and Structures

Author: René de Borst

Publisher: John Wiley & Sons

Published: 2012-07-25

Total Pages: 481

ISBN-13: 1118376013

DOWNLOAD EBOOK

Built upon the two original books by Mike Crisfield and their own lecture notes, renowned scientist René de Borst and his team offer a thoroughly updated yet condensed edition that retains and builds upon the excellent reputation and appeal amongst students and engineers alike for which Crisfield's first edition is acclaimed. Together with numerous additions and updates, the new authors have retained the core content of the original publication, while bringing an improved focus on new developments and ideas. This edition offers the latest insights in non-linear finite element technology, including non-linear solution strategies, computational plasticity, damage mechanics, time-dependent effects, hyperelasticity and large-strain elasto-plasticity. The authors' integrated and consistent style and unrivalled engineering approach assures this book's unique position within the computational mechanics literature. Key features: Combines the two previous volumes into one heavily revised text with obsolete material removed, an improved layout and updated references and notations Extensive new material on more recent developments in computational mechanics Easily readable, engineering oriented, with no more details in the main text than necessary to understand the concepts. Pseudo-code throughout makes the link between theory and algorithms, and the actual implementation. Accompanied by a website (www.wiley.com/go/deborst) with a Python code, based on the pseudo-code within the book and suitable for solving small-size problems. Non-linear Finite Element Analysis of Solids and Structures, 2nd Edition is an essential reference for practising engineers and researchers that can also be used as a text for undergraduate and graduate students within computational mechanics.


The Finite Element Method for Solid and Structural Mechanics

The Finite Element Method for Solid and Structural Mechanics

Author: O. C. Zienkiewicz

Publisher: Elsevier

Published: 2005-08-09

Total Pages: 653

ISBN-13: 0080455581

DOWNLOAD EBOOK

This is the key text and reference for engineers, researchers and senior students dealing with the analysis and modelling of structures – from large civil engineering projects such as dams, to aircraft structures, through to small engineered components. Covering small and large deformation behaviour of solids and structures, it is an essential book for engineers and mathematicians. The new edition is a complete solids and structures text and reference in its own right and forms part of the world-renowned Finite Element Method series by Zienkiewicz and Taylor. New material in this edition includes separate coverage of solid continua and structural theories of rods, plates and shells; extended coverage of plasticity (isotropic and anisotropic); node-to-surface and 'mortar' method treatments; problems involving solids and rigid and pseudo-rigid bodies; and multi-scale modelling. Dedicated coverage of solid and structural mechanics by world-renowned authors, Zienkiewicz and Taylor New material including separate coverage of solid continua and structural theories of rods, plates and shells; extended coverage for small and finite deformation; elastic and inelastic material constitution; contact modelling; problems involving solids, rigid and discrete elements; and multi-scale modelling


Non-Linear Finite Element Analysis in Structural Mechanics

Non-Linear Finite Element Analysis in Structural Mechanics

Author: Wilhelm Rust

Publisher: Springer

Published: 2015-02-18

Total Pages: 367

ISBN-13: 3319133802

DOWNLOAD EBOOK

This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.