This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
This volume provides an introduction to the properties of functional differential equations and their applications in diverse fields such as immunology, nuclear power generation, heat transfer, signal processing, medicine and economics. In particular, it deals with problems and methods relating to systems having a memory (hereditary systems). The book contains eight chapters. Chapter 1 explains where functional differential equations come from and what sort of problems arise in applications. Chapter 2 gives a broad introduction to the basic principle involved and deals with systems having discrete and distributed delay. Chapters 3-5 are devoted to stability problems for retarded, neutral and stochastic functional differential equations. Problems of optimal control and estimation are considered in Chapters 6-8. For applied mathematicians, engineers, and physicists whose work involves mathematical modeling of hereditary systems. This volume can also be recommended as a supplementary text for graduate students who wish to become better acquainted with the properties and applications of functional differential equations.
This book covers the most important issues in the theory of functional differential equations and their applications for both deterministic and stochastic cases. Among the subjects treated are qualitative theory, stability, periodic solutions, optimal control and estimation, the theory of linear equations, and basic principles of mathematical modelling. The work, which treats many concrete problems in detail, gives a good overview of the entire field and will serve as a stimulating guide to further research. Audience: This volume will be of interest to researchers and (post)graduate students working in analysis, and in functional analysis in particular. It will also appeal to mathematical engineers, industrial mathematicians, mathematical system theoreticians and mathematical modellers.
Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs--and the requirement for rapid solution--pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Audience: readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in "offline" optimization contexts and are interested in moving to "online" optimization.
Nonlinear Phenomena in Mathematical Sciences contains the proceedings of an International Conference on Nonlinear Phenomena in Mathematical Sciences, held at the University of Texas at Arlington, on June 16-20,1980. The papers explore trends in nonlinear phenomena in mathematical sciences, with emphasis on nonlinear functional analytic methods and their applications; nonlinear wave theory; and applications to medical and life sciences. In the area of nonlinear functional analytic methods and their applications, the following subjects are discussed: optimal control theory; periodic oscillations of nonlinear mechanical systems; Leray-Schauder degree theory; differential inequalities applied to parabolic and elliptic partial differential equations; bifurcation theory, stability theory in analytical mechanics; singular and ordinary boundary value problems, etc. The following topics in nonlinear wave theory are considered: nonlinear wave propagation in a randomly homogeneous media; periodic solutions of a semilinear wave equation; asymptotic behavior of solutions of strongly damped nonlinear wave equations; shock waves and dissipation theoretical methods for a nonlinear Schr?dinger equation; and nonlinear hyperbolic Volterra equations occurring in viscoelasticity. Applications to medical and life sciences include mathematical modeling in physiology, pharmacokinetics, and neuro-mathematics, along with epidemic modeling and parameter estimation techniques. This book will be helpful to students, practitioners, and researchers in the field of mathematics.