A backfire antenna is described which incorporates a dielectric slow-wave structure in place of the parasitic directors of earlier models. Using previously investigated optimum dimensions, this antenna uses new techniques of energizing in a cross polarized sense. Measurements of far-field patterns, directivity, and isolation between primary planes are given. (Author).
The backfire antenna described combines the structural advantages of a single endfire with the high gain of a reflector antenna. With its principal application in the gain range between 15 and 30 dB where ordinary endfire antennas become impractically long and paraboloidal antennas too expensive, it should prove to be especially advantageous for telemetry and radio astronomy applications in the 100- to 2000-MHz frequency range. The high gain of the backfire is based on the high-amplitude standing-wave field distribution formed between two planar reflectors. The space between the reflectors acts like an open resonating cavity that in basic configuration and function resembles a Fabrey-Perot laser cavity. An S-band model of a 4.0-wavelength backfire produces a gain of 23.5 dB at its optimum frequency, which corresponds to the gain of an equal-size paraboloidal antenna of 60% efficiency. Patterns show a very low side- and backlobe level over a frequency range of 1.25 to 1. Design information for these backfire antennas is given. Compared with an optimized equal-length Yagi, the backfire antenna produces an increase in gain of more than 8 dB. To achieve a gain of this magnitude with an ordinary array, one of two recently built antennas for satellite applications uses 16 Yagis, each 2.0 wavelength long, to produce a gain of 22.4 dB, and another uses 36 cavity-backed slots to produce 21.2 dB. These results emphasize the advantages of the single-element backfire antenna, whose 23.5 dB gain is achieved through a simple structural design that does not depend on the complicated feed systems that are necessary components in multielement arrays. (Author).
This bibliography lists all AFCRL in-house reports, journal articles, and contractor reports issued from 1 July to 30 September 1969. Abstracts are included for the in-house and contractor reports.
Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.
A practical book written for engineers who design and use antennas The author has many years of hands on experience designing antennas that were used in such applications as the Venus and Mars missions of NASA The book covers all important topics of modern antenna design for communications Numerical methods will be included but only as much as are needed for practical applications