A Course in Lens Design

A Course in Lens Design

Author: Chris Velzel

Publisher: Springer

Published: 2014-03-28

Total Pages: 344

ISBN-13: 9401786852

DOWNLOAD EBOOK

A Course in Lens Design is an instruction in the design of image-forming optical systems. It teaches how a satisfactory design can be obtained in a straightforward way. Theory is limited to a minimum, and used to support the practical design work. The book introduces geometrical optics, optical instruments and aberrations. It gives a description of the process of lens design and of the strategies used in this process. Half of its content is devoted to the design of sixteen types of lenses, described in detail from beginning to end. This book is different from most other books on lens design because it stresses the importance of the initial phases of the design process: (paraxial) lay-out and (thin-lens) pre-design. The argument for this change of accent is that in these phases much information can be obtained about the properties of the lens to be designed. This information can be used in later phases of the design. This makes A Course in Lens Design a useful self-study book and a suitable basis for an introductory course in lens design. The mathematics mainly used is college algebra, in a few sections calculus is applied. The book could be used by students of engineering and technical physics and by engineers and scientists.


Introduction to Lens Design

Introduction to Lens Design

Author: José Sasián

Publisher: Cambridge University Press

Published: 2019-09-26

Total Pages: 251

ISBN-13: 1108494323

DOWNLOAD EBOOK

A concise introduction to lens design, including the fundamental theory, concepts, methods and tools used in the field. Covering all the essential concepts and providing suggestions for further reading at the end of each chapter, this book is an essential resource for graduate students working in optics and photonics.


Field Guide to Lens Design

Field Guide to Lens Design

Author: Julie L. Bentley

Publisher:

Published: 2012

Total Pages: 0

ISBN-13: 9780819491640

DOWNLOAD EBOOK

The process of designing lenses is both an art and a science. While advances in the field over the past two centuries have done much to transform it from the former category to the latter, much of the lens design process remains encapsulated in the experience and knowledge of industry veterans. This SPIE Field Guide provides a working reference for practicing physicists, engineers, and scientists for deciphering the nuances of basic lens design.


Lens Design Fundamentals

Lens Design Fundamentals

Author: Rudolf Kingslake

Publisher: Academic Press

Published: 2009-11-20

Total Pages: 570

ISBN-13: 0080921566

DOWNLOAD EBOOK

- Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 - Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer - Many new lens design problems and examples – ranging from simple lenses to complex zoom lenses and mirror systems – give insight for both the newcomer and specialist in the field Rudolf Kingslake is regarded as the American father of lens design; his book, not revised since its publication in 1978, is viewed as a classic in the field. Naturally, the area has developed considerably since the book was published, the most obvious changes being the availability of powerful lens design software packages, theoretical advances, and new surface fabrication technologies. This book provides the skills and knowledge to move into the exciting world of contemporary lens design and develop practical lenses needed for the great variety of 21st-century applications. Continuing to focus on fundamental methods and procedures of lens design, this revision by R. Barry Johnson of a classic modernizes symbology and nomenclature, improves conceptual clarity, broadens the study of aberrations, enhances discussion of multi-mirror systems, adds tilted and decentered systems with eccentric pupils, explores use of aberrations in the optimization process, enlarges field flattener concepts, expands discussion of image analysis, includes many new exemplary examples to illustrate concepts, and much more. Optical engineers working in lens design will find this book an invaluable guide to lens design in traditional and emerging areas of application; it is also suited to advanced undergraduate or graduate course in lens design principles and as a self-learning tutorial and reference for the practitioner. Rudolf Kingslake (1903-2003) was a founding faculty member of the Institute of Optics at The University of Rochester (1929) and remained teaching until 1983. Concurrently, in 1937 he became head of the lens design department at Eastman Kodak until his retirement in 1969. Dr. Kingslake published numerous papers, books, and was awarded many patents. He was a Fellow of SPIE and OSA, and an OSA President (1947-48). He was awarded the Progress Medal from SMPTE (1978), the Frederic Ives Medal (1973), and the Gold Medal of SPIE (1980). R. Barry Johnson has been involved for over 40 years in lens design, optical systems design, and electro-optical systems engineering. He has been a faculty member at three academic institutions engaged in optics education and research, co-founder of the Center for Applied Optics at the University of Alabama in Huntsville, employed by a number of companies, and provided consulting services. Dr. Johnson is an SPIE Fellow and Life Member, OSA Fellow, and an SPIE President (1987). He published numerous papers and has been awarded many patents. Dr. Johnson was founder and Chairman of the SPIE Lens Design Working Group (1988-2002), is an active Program Committee member of the International Optical Design Conference, and perennial co-chair of the annual SPIE Current Developments in Lens Design and Optical Engineering Conference. - Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 - Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer - Many new lens design problems and examples – ranging from simple lenses to complex zoom lenses and mirror systems – give insight for both the newcomer and specialist in the field


Handbook of Optical Design

Handbook of Optical Design

Author: Daniel Malacara-Hernández

Publisher: CRC Press

Published: 2003-09-21

Total Pages: 551

ISBN-13: 0203912942

DOWNLOAD EBOOK

Infused with more than 500 tables and figures, this reference clearly illustrates the intricacies of optical system design and evaluation and considers key aspects of component selection, optimization, and integration for the development of effective optical apparatus. The book provides a much-needed update on the vanguard in the field with vivid e


OPTICAL SYSTEM DESIGN

OPTICAL SYSTEM DESIGN

Author: Robert Fischer

Publisher: McGraw Hill Professional

Published: 2000-07-21

Total Pages: 577

ISBN-13: 0071500251

DOWNLOAD EBOOK

This classic resource provides a clear, well-illustrated introduction to the essentials of optical design-from basic principles to cutting-edge design methods.


Modern Lens Design

Modern Lens Design

Author: Warren Smith

Publisher: McGraw Hill Professional

Published: 2004-10-22

Total Pages: 664

ISBN-13: 9780071438308

DOWNLOAD EBOOK

Unlike the first edition, which was more a collection of lens designs for use in larger projects, the 2nd edition of Modern Lens Design is an optical “how-to.” Delving deep into the mechanics of lens design, optics legend Warren J. Smith reveals time-tested methods for designing top-quality lenses. He deals with lens design software, primarily OSLO, by far the current market leaders, and provides 7 comprehensive worked examples, all new to this edition. With this book in hand, there’s no lens an optical engineer can’t design.


Designing Optics Using Code V

Designing Optics Using Code V

Author: Donald C. O'Shea

Publisher: SPIE-International Society for Optical Engineering

Published: 2018-08

Total Pages: 360

ISBN-13: 9781510619739

DOWNLOAD EBOOK

"This book explains how to design an optical system using the high-end optical design program CODE V. The design process, from lens definition to the description and evaluation of lens errors and onto the improvement of lens performance, will be developed and illustrated using the program. The text is organized so that readers can (1) reproduce each step of the process including the plots for evaluating lens performance and (2) understand the significance of each step in producing a final design"--