A Concrete Approach To Abstract Algebra,Student Solutions Manual (e-only)

A Concrete Approach To Abstract Algebra,Student Solutions Manual (e-only)

Author: Jeffrey Bergen

Publisher: Academic Press

Published: 2010-04-15

Total Pages: 115

ISBN-13: 0123846811

DOWNLOAD EBOOK

A Concrete Approach to Abstract Algebra begins with a concrete and thorough examination of familiar objects like integers, rational numbers, real numbers, complex numbers, complex conjugation and polynomials, in this unique approach, the author builds upon these familar objects and then uses them to introduce and motivate advanced concepts in algebra in a manner that is easier to understand for most students. The text will be of particular interest to teachers and future teachers as it links abstract algebra to many topics wich arise in courses in algebra, geometry, trigonometry, precalculus and calculus. The final four chapters present the more theoretical material needed for graduate study.


Abstract Algebra

Abstract Algebra

Author: Thomas Judson

Publisher: Orthogonal Publishing L3c

Published: 2023-08-11

Total Pages: 0

ISBN-13: 9781944325190

DOWNLOAD EBOOK

Abstract Algebra: Theory and Applications is an open-source textbook that is designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner. Its strengths include a wide range of exercises, both computational and theoretical, plus many non-trivial applications. The first half of the book presents group theory, through the Sylow theorems, with enough material for a semester-long course. The second half is suitable for a second semester and presents rings, integral domains, Boolean algebras, vector spaces, and fields, concluding with Galois Theory.


A Concrete Introduction to Higher Algebra

A Concrete Introduction to Higher Algebra

Author: Lindsay Childs

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 348

ISBN-13: 1468400657

DOWNLOAD EBOOK

This book is written as an introduction to higher algebra for students with a background of a year of calculus. The book developed out of a set of notes for a sophomore-junior level course at the State University of New York at Albany entitled Classical Algebra. In the 1950s and before, it was customary for the first course in algebra to be a course in the theory of equations, consisting of a study of polynomials over the complex, real, and rational numbers, and, to a lesser extent, linear algebra from the point of view of systems of equations. Abstract algebra, that is, the study of groups, rings, and fields, usually followed such a course. In recent years the theory of equations course has disappeared. Without it, students entering abstract algebra courses tend to lack the experience in the algebraic theory of the basic classical examples of the integers and polynomials necessary for understanding, and more importantly, for ap preciating the formalism. To meet this problem, several texts have recently appeared introducing algebra through number theory.


Introductory Modern Algebra

Introductory Modern Algebra

Author: Saul Stahl

Publisher: John Wiley & Sons

Published: 2013-09-30

Total Pages: 464

ISBN-13: 1118552032

DOWNLOAD EBOOK

Praise for the First Edition "Stahl offers the solvability of equations from the historicalpoint of view...one of the best books available to support aone-semester introduction to abstract algebra." —CHOICE Introductory Modern Algebra: A Historical Approach, SecondEdition presents the evolution of algebra and provides readerswith the opportunity to view modern algebra as a consistentmovement from concrete problems to abstract principles. With a fewpertinent excerpts from the writings of some of the greatestmathematicians, the Second Edition uniquely facilitates theunderstanding of pivotal algebraic ideas. The author provides a clear, precise, and accessibleintroduction to modern algebra and also helps to develop a moreimmediate and well-grounded understanding of how equations lead topermutation groups and what those groups can inform us about suchdiverse items as multivariate functions and the 15-puzzle.Featuring new sections on topics such as group homomorphisms, theRSA algorithm, complex conjugation, the factorization of realpolynomials, and the fundamental theorem of algebra, the SecondEdition also includes: An in-depth explanation of the principles and practices ofmodern algebra in terms of the historical development from theRenaissance solution of the cubic equation to Dedekind'sideals Historical discussions integrated with the development ofmodern and abstract algebra in addition to many new explicitstatements of theorems, definitions, and terminology A new appendix on logic and proofs, sets, functions, andequivalence relations Over 1,000 new examples and multi-level exercises at the end ofeach section and chapter as well as updated chapter summaries Introductory Modern Algebra: A Historical Approach, SecondEdition is an excellent textbook for upper-undergraduatecourses in modern and abstract algebra.


A Programmer's Introduction to Mathematics

A Programmer's Introduction to Mathematics

Author: Jeremy Kun

Publisher:

Published: 2020-05-17

Total Pages: 400

ISBN-13:

DOWNLOAD EBOOK

A Programmer's Introduction to Mathematics uses your familiarity with ideas from programming and software to teach mathematics. You'll learn about the central objects and theorems of mathematics, including graphs, calculus, linear algebra, eigenvalues, optimization, and more. You'll also be immersed in the often unspoken cultural attitudes of mathematics, learning both how to read and write proofs while understanding why mathematics is the way it is. Between each technical chapter is an essay describing a different aspect of mathematical culture, and discussions of the insights and meta-insights that constitute mathematical intuition. As you learn, we'll use new mathematical ideas to create wondrous programs, from cryptographic schemes to neural networks to hyperbolic tessellations. Each chapter also contains a set of exercises that have you actively explore mathematical topics on your own. In short, this book will teach you to engage with mathematics. A Programmer's Introduction to Mathematics is written by Jeremy Kun, who has been writing about math and programming for 10 years on his blog "Math Intersect Programming." As of 2020, he works in datacenter optimization at Google.The second edition includes revisions to most chapters, some reorganized content and rewritten proofs, and the addition of three appendices.


Advanced Calculus (Revised Edition)

Advanced Calculus (Revised Edition)

Author: Lynn Harold Loomis

Publisher: World Scientific Publishing Company

Published: 2014-02-26

Total Pages: 595

ISBN-13: 9814583952

DOWNLOAD EBOOK

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.


A Book of Abstract Algebra

A Book of Abstract Algebra

Author: Charles C Pinter

Publisher: Courier Corporation

Published: 2010-01-14

Total Pages: 402

ISBN-13: 0486474178

DOWNLOAD EBOOK

Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.