A Treatise on the Calculus of Finite Differences
Author: George Boole
Publisher:
Published: 1880
Total Pages: 414
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: George Boole
Publisher:
Published: 1880
Total Pages: 414
ISBN-13:
DOWNLOAD EBOOKAuthor: Ranjan Roy
Publisher: Cambridge University Press
Published: 2021-03-18
Total Pages: 480
ISBN-13: 1108573150
DOWNLOAD EBOOKThis is the second volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible even to advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 examines more recent results, including deBranges' resolution of Bieberbach's conjecture and Nevanlinna's theory of meromorphic functions.
Author: Ranjan Roy
Publisher: Cambridge University Press
Published: 2021-03-18
Total Pages:
ISBN-13: 1108573185
DOWNLOAD EBOOKThis is the first volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible to even advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 treats more recent work, including deBranges' solution of Bieberbach's conjecture, and requires more advanced mathematical knowledge.
Author: Ranjan Roy
Publisher: Cambridge University Press
Published: 2021-03-18
Total Pages: 779
ISBN-13: 1108709451
DOWNLOAD EBOOKFirst of two volumes tracing the development of series and products. Second edition adds extensive material from original works.
Author: Hans Petter Langtangen
Publisher: Springer
Published: 2017-06-21
Total Pages: 522
ISBN-13: 3319554565
DOWNLOAD EBOOKThis book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.
Author: HENRY G. BOHNS
Publisher:
Published: 1848
Total Pages: 604
ISBN-13:
DOWNLOAD EBOOKAuthor: HENRY J. BOHN
Publisher:
Published: 1847
Total Pages: 602
ISBN-13:
DOWNLOAD EBOOKAuthor: Henry George BOHN
Publisher:
Published: 1848
Total Pages: 594
ISBN-13:
DOWNLOAD EBOOKAuthor: Lynn Harold Loomis
Publisher: World Scientific Publishing Company
Published: 2014-02-26
Total Pages: 595
ISBN-13: 9814583952
DOWNLOAD EBOOKAn authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Author: Kevin Lambert
Publisher: University of Pittsburgh Press
Published: 2021-10-12
Total Pages: 301
ISBN-13: 0822988410
DOWNLOAD EBOOKIn the steam-powered mechanical age of the eighteenth and nineteenth centuries, the work of late Georgian and early Victorian mathematicians depended on far more than the properties of number. British mathematicians came to rely on industrialized paper and pen manufacture, railways and mail, and the print industries of the book, disciplinary journal, magazine, and newspaper. Though not always physically present with one another, the characters central to this book—from George Green to William Rowan Hamilton—relied heavily on communication technologies as they developed their theories in consort with colleagues. The letters they exchanged, together with the equations, diagrams, tables, or pictures that filled their manuscripts and publications, were all tangible traces of abstract ideas that extended mathematicians into their social and material environment. Each chapter of this book explores a thing, or assembling of things, mathematicians needed to do their work—whether a textbook, museum, journal, library, diagram, notebook, or letter—all characteristic of the mid-nineteenth-century British taskscape, but also representative of great change to a discipline brought about by an industrialized world in motion.