Interactive Data Processing and 3D Visualization of the Solid Earth

Interactive Data Processing and 3D Visualization of the Solid Earth

Author: Daniel Patel

Publisher: Springer Nature

Published: 2022-02-21

Total Pages: 359

ISBN-13: 3030907163

DOWNLOAD EBOOK

This book presents works detailing the application of processing and visualization techniques for analyzing the Earth’s subsurface. The topic of the book is interactive data processing and interactive 3D visualization techniques used on subsurface data. Interactive processing of data together with interactive visualization is a powerful combination which has in the recent years become possible due to hardware and algorithm advances in. The combination enables the user to perform interactive exploration and filtering of datasets while simultaneously visualizing the results so that insights can be made immediately. This makes it possible to quickly form hypotheses and draw conclusions. Case studies from the geosciences are not as often presented in the scientific visualization and computer graphics community as e.g., studies on medical, biological or chemical data. This book will give researchers in the field of visualization and computer graphics valuable insight into the open visualization challenges in the geosciences, and how certain problems are currently solved using domain specific processing and visualization techniques. Conversely, readers from the geosciences will gain valuable insight into relevant visualization and interactive processing techniques. Subsurface data has interesting characteristics such as its solid nature, large range of scales and high degree of uncertainty, which makes it challenging to visualize with standard methods. It is also noteworthy that parallel fields of research have taken place in geosciences and in computer graphics, with different terminology when it comes to representing geometry, describing terrains, interpolating data and (example-based) synthesis of data. The domains covered in this book are geology, digital terrains, seismic data, reservoir visualization and CO2 storage. The technologies covered are 3D visualization, visualization of large datasets, 3D modelling, machine learning, virtual reality, seismic interpretation and multidisciplinary collaboration. People within any of these domains and technologies are potential readers of the book.


Innovations in 3D Geo-Information Sciences

Innovations in 3D Geo-Information Sciences

Author: Umit Isikdag

Publisher: Springer

Published: 2014-06-07

Total Pages: 320

ISBN-13: 3319005154

DOWNLOAD EBOOK

3D GeoInfo aims to bring together international state-of-the-art research and facilitate the dialogue on emerging topics in the field of 3D geo-information. The conference offers an interdisciplinary forum in the fields of 3D data collection and modeling; reconstruction and methods for 3D representation; data management for maintenance of 3D geo-information or 3D data analysis and visualization. The book covers the best papers from 3D GeoInfo held in Istanbul in November 2013.


Geographic Information Systems in Oceanography and Fisheries

Geographic Information Systems in Oceanography and Fisheries

Author: Vasilis D. Valavanis

Publisher: CRC Press

Published: 2002-05-23

Total Pages: 209

ISBN-13: 0203303180

DOWNLOAD EBOOK

Over the last two decades there has been increasing recognition that problems in oceanography and fisheries sciences and related marine areas are nearly all manifest in the spatio-temporal domain. Geographical Information Systems (GIS), the natural framework for spatial data handling, are being recognized as powerful tools with useful applications


Comprehensive Geographic Information Systems

Comprehensive Geographic Information Systems

Author:

Publisher: Elsevier

Published: 2017-07-21

Total Pages: 1488

ISBN-13: 0128047933

DOWNLOAD EBOOK

Geographical Information Systems, Three Volume Set is a computer system used to capture, store, analyze and display information related to positions on the Earth’s surface. It has the ability to show multiple types of information on multiple geographical locations in a single map, enabling users to assess patterns and relationships between different information points, a crucial component for multiple aspects of modern life and industry. This 3-volumes reference provides an up-to date account of this growing discipline through in-depth reviews authored by leading experts in the field. VOLUME EDITORS Thomas J. Cova The University of Utah, Salt Lake City, UT, United States Ming-Hsiang Tsou San Diego State University, San Diego, CA, United States Georg Bareth University of Cologne, Cologne, Germany Chunqiao Song University of California, Los Angeles, CA, United States Yan Song University of North Carolina at Chapel Hill, Chapel Hill, NC, United States Kai Cao National University of Singapore, Singapore Elisabete A. Silva University of Cambridge, Cambridge, United Kingdom Covers a rapidly expanding discipline, providing readers with a detailed overview of all aspects of geographic information systems, principles and applications Emphasizes the practical, socioeconomic applications of GIS Provides readers with a reliable, one-stop comprehensive guide, saving them time in searching for the information they need from different sources


3D Geoscience Modeling

3D Geoscience Modeling

Author: Simon Houlding

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 399

ISBN-13: 3642790127

DOWNLOAD EBOOK

This book is a result of a career spent developing and applying computer techniques for the geosciences. The need for a geoscience modeling reference became apparent during participation in several workshops and conferences on the subject in the last three years. For organizing these, and for the lively discussions that ensued and inevitably contributed to the contents, I thank Keith Turner, Brian Kelk, George Pflug and Johnathan Raper. The total number of colleagues who contributed in various ways over the preceding years to the concepts and techniques presented is beyond count. The book is dedicated to all of them. Compilation of the book would have been impossible without assistance from a number of colleagues who contributed directly. In particular, Ed Rychkun, Joe Ringwald, Dave Elliott, Tom Fisher and Richard Saccany reviewed parts of the text and contributed valuable comment. Mohan Srivastava reviewed and contributed to some of the geostatistical presentations. Mark Stoakes, Peter Dettlaff and Simon Wigzell assisted with computer processing of the many application examples. Anar Khanji and Randal Crombe assisted in preparation of the text and computer images. Klaus Lamers assisted with printing. The US Geological Survey, the British Columbia Ministry of Environment, Dave Elliott and others provided data for the application examples. My sincere thanks to all of them.


3D Digital Geological Models

3D Digital Geological Models

Author: Andrea Bistacchi

Publisher: John Wiley & Sons

Published: 2022-03-29

Total Pages: 243

ISBN-13: 1119313899

DOWNLOAD EBOOK

3D DIGITAL GEOLOGICAL MODELS Discover the practical aspects of modeling techniques and their applicability on both terrestrial and extraterrestrial structures A wide overlap exists in the methodologies used by geoscientists working on the Earth and those focused on other planetary bodies in the Solar System. Over the course of a series of sessions at the General Assemblies of the European Geosciences Union in Vienna, the intersection found in 3D characterization and modeling of geological and geomorphological structures for all terrestrial bodies in our solar system revealed that there are similar datasets and common techniques for the study of all planets—Earth and beyond—from a geological point-of-view. By looking at Digital Outcrop Models (DOMs), Digital Elevation Models (DEMs), or Shape Models (SM), researchers may achieve digital representations of outcrops, topographic surfaces, or entire small bodies of the Solar System, like asteroids or comet nuclei. 3D Digital Geological Models: From Terrestrial Outcrops to Planetary Surfaces has two central objectives, to highlight the similarities that geological disciplines have in common when applied to entities in the Solar System, and to encourage interdisciplinary communication and collaboration between different scientific communities. The book particularly focuses on analytical techniques on DOMs, DEMs and SMs that allow for quantitative characterization of outcrops and geomorphological features. It also highlights innovative 3D interpretation and modeling strategies that allow scientists to gain new and more advanced quantitative results on terrestrial and extraterrestrial structures. 3D Digital Geological Models: From Terrestrial Outcrops to Planetary Surfaces readers will also find: The first volume dedicated to this subject matter that successfully integrates methodology and applications A series of methodological chapters that provide instruction on best practices involving DOMs, DEMs, and SMs A wide range of case studies, including small- to large-scale projects on Earth, Mars, the 67P/Churyumov-Gerasimenko comet, and the Moon Examples of how data collected at surface can help reconstruct 3D subsurface models 3D Digital Geological Models: From Terrestrial Outcrops to Planetary Surfaces is a useful reference for academic researchers in earth science, structural geology, geophysics, petroleum geology, remote sensing, geostatistics, and planetary scientists, and graduate students studying in these fields. It will also be of interest for professionals from industry, particularly those in the mining and hydrocarbon fields.


Geoscience After IT

Geoscience After IT

Author: T.V. Loudon

Publisher: Elsevier

Published: 2000-12-19

Total Pages: 159

ISBN-13: 0080532519

DOWNLOAD EBOOK

Most geoscientists are aware of recent IT developments, but cannot spend time on obscure technicalities. Few have considered their implications for the science as a whole. Yet the information industry is moving fast: electronic delivery of hyperlinked multimedia; standards to support interdisciplinary and geographic integration; new models to represent and visualize our concepts, and control and manage our activities; plummeting costs that force the pace. To stay on course, the scientist needs a broad appreciation of the complex and profound interactions of geoscience and IT, not previously reviewed in a single work.The book brings together ideas from many sources, some probably unfamiliar, that bear on the geoscience information system. It encourages readers to give thought to areas that, for various reasons, they have taken for granted, and to take a view on forces affecting geoscience, the consequences for themselves and their organisations, and the need to reconsider, adapt and rebuild.Practicing geoscientists with a general interest in how IT will affect their work and influence future directions of the science; geoscientists familiar with IT applications in their own specialist field who need a broader perspective; and students or educators specializing in IT applications in geoscience who require a top-down overview of their subject will find this title valuable. The IT background from this book should help geoscientists build a strategy for the new century.


Advances in 3D Geoinformation

Advances in 3D Geoinformation

Author: Alias Abdul-Rahman

Publisher: Springer

Published: 2016-10-17

Total Pages: 508

ISBN-13: 3319256912

DOWNLOAD EBOOK

The book presents a collection of accepted papers from the 3DGeoinfo 2015 international conference held in Kuala Lumpur, Malaysia from October 28 – 30, 2015. All papers underwent double-blind review by experts from around the globe. The conference brought together pioneering international researchers and practitioners to facilitate the dialogue on emerging topics in the field of 3D geo-information. The focus areas include: - Data Collection and Modeling: advanced approaches for 3D data collection, reconstruction and methods for representation- Data Management: topological, geometrical and network models for maintenance of 3D geoinformation- Data Analysis and Visualization: frameworks for representing 3D spatial relationships, 3D spatial analysis and algorithms for navigation, interpolation, advanced VR, AR and MR visualisation, as well as 3D visualization on mobile devices- 3D Applications: city models, Cadastre, LBS, etc.


Integrated Information and Computing Systems for Natural, Spatial, and Social Sciences

Integrated Information and Computing Systems for Natural, Spatial, and Social Sciences

Author: Rückemann, Claus-Peter

Publisher: IGI Global

Published: 2012-10-31

Total Pages: 543

ISBN-13: 1466621915

DOWNLOAD EBOOK

The 21st century has seen a number of advancements in technology, including the use of high performance computing. Computing resources are being used by the science and economy fields for data processing, simulation, and modeling. These innovations aid in the support of production, logistics, and mobility processes. Integrated Information and Computing Systems for Natural, Spatial, and Social Sciences covers a carefully selected spectrum of the most up to date issues, revealing the benefits, dynamism, potential, and challenges of information and computing system application scenarios and components from a wide spectrum of prominent disciplines. This comprehensive collection offers important guidance on the development stage of the universal solution to information and computing systems for researchers as well as industry decision makers and developers.