4D Printing Dielectric Elastomer Actuator Based Soft Robots

4D Printing Dielectric Elastomer Actuator Based Soft Robots

Author: Jiyu Cai

Publisher:

Published: 2016

Total Pages: 194

ISBN-13:

DOWNLOAD EBOOK

4D printing is an emerging technology that prints 3D structural smart materials that can respond to external stimuli and change shape over time. 4D printing represents a major manufacturing paradigm shift from single-function static structures to dynamic structures with highly integrated functionalities. Direct printing of dynamic structures can provide great benefits (e.g., design freedom, low material cost) to a wide variety of applications, such as sensors and actuators, and robotics. Soft robotics is a new direction of robotics in which hard and rigid components are replaced by soft and flexible materials to mimic mechanisms that works in living creatures, which are crucial for dealing with uncertain and dynamic tasks. However, little research on direct printing of soft robotics has been reported. Due to the short history of 4D printing, only a few smart materials have been successfully 4D printed, such as shape memory and thermo-responsive polymers, which have relatively small actuation strains (up to ~8%). In order to produce the large motion, dielectric elastomer actuator (DEA), a sheet of elastomer sandwiched between two compliant electrodes and known as artificial muscle for its high elastic energy density and capability of producing large strains (~200%), is chosen as the actuator for soft robotics. Little research on 3D printing silicone DEA soft robotics has been done in the literature. Thus, this thesis is motivated by applying the advantages in 3D printing fabrication methods to develop DEA soft robotics. The ultimate research goal is to demonstrate fully printed DEA soft robots with large actuation. In Chapter 1, the research background of soft robotics and DEAs are introduced, as well as 3D printing technologies. Chapter 2 reports the rules of selecting potentially good silicone candidates and the printing process with printed material characterizations. Chapter 3 studies the effects of pre-strain condition on silicone material properties and the performance of DEA configurations, in order to obtain large actuation strain. In Chapter 4, two facial soft robots are designed to achieve facial expressions as judged by a smiling lip and expanding pupils based on DEA actuation. Conclusions and future developments are given in chapter 5 and 6, respectively.


Smart Materials in Additive Manufacturing, volume 1: 4D Printing Principles and Fabrication

Smart Materials in Additive Manufacturing, volume 1: 4D Printing Principles and Fabrication

Author: Mahdi Bodaghi

Publisher: Elsevier

Published: 2022-06-25

Total Pages: 484

ISBN-13: 0128240830

DOWNLOAD EBOOK

Smart Materials in Additive Manufacturing, Volume 1 provides readers with an overview of the current smart materials widely in use and the techniques for additively manufacturing them. It demonstrates the principles developed for 4D printing in a way that is useful for students, early career researchers, and professionals. Topics covered include modeling and fabrication of 4D printed materials such as dielectric elastomer soft robots, low-voltage electroactive polymers, and stimuli-responsive hydrogels. 4D printing of light-responsive structures, gels and soft materials, and natural fiber composites are also discussed, as is origami-inspired 4D printing, 4D microprinting, and reversible 4D printing. 4D bioprinting and related biomedical applications are outlined as well as functionalized 4D printed sensor systems. Key Features:* Discusses 4D printed shape memory polymers, shape memory alloys, natural fibers, and hydrogels* Covers various types of stimuli, fabrication techniques, multi-physics modeling, and control strategies for 4D printing* Explores 4D printing of dielectric elastomers, liquid crystal elastomers, and electroactive polymers Covers the mechanics, manufacturing processes and applications of 4D-printed smart materials and structures Discusses applications in civil, mechanical, aerospace, polymer and biomedical engineering Presents experimental, numerical and analytical studies in a simple and straightforward manner, providing tools that can be immediately implemented and adapted by readers to fit their work


Introduction to Advanced Soft Robotics

Introduction to Advanced Soft Robotics

Author: Juntian Qu

Publisher: Bentham Science Publishers

Published: 2024-07-31

Total Pages: 285

ISBN-13: 9815256483

DOWNLOAD EBOOK

Introduction to Advanced Soft Robotics is an introductory textbook on soft body robotics. The content is designed to enable readers to better understand soft body robotics. Starting with an introduction to the subject, contents explain fundamental concepts such as perception and sensing, fabrication techniques and material design. These introductory chapters demonstrate the design concept and related design structures of soft robots from multiple perspectives, which can provide considerable design references for robotics learners and enthusiasts. Next, the book explains modeling and control for soft robotics and the applications. Key features of this book include easy-to-understand language and format, simple illustrations and a balanced overview of the subject (including a section on challenges and future prospects for soft robotics), and scientific references.


Large Deformable Soft Actuators Using Dielectric Elastomer and Origami Inspired Structures

Large Deformable Soft Actuators Using Dielectric Elastomer and Origami Inspired Structures

Author: JangHo Park

Publisher:

Published: 2019

Total Pages: 254

ISBN-13:

DOWNLOAD EBOOK

"There have been significant developments in the field of robotics. Significant development consists of new configurations, control mechanisms, and actuators based upon its applications. Despite significant improvements in modern robotics, the biologically inspired robots has taken the center stage. Inspired by nature, biologically inspired robots are called ‘soft robots’. Within these robots lies a secret ingredient: the actuator. Soft robotic development has been driven by the idea of developing actuators that are like human muscle and are known as ‘artificial muscle’. Among different materials suitable for the development of artificial muscle, the dielectric elastomer actuator (DEA) is capable of large deformation by applying an electric field. Theoretical formulation for DEA was performed based upon the constitutive hyperelastic models and was validated by using finite element method (FEM) using ABAQUS. For FEM, multistep analysis was performed to apply pre-stretch to the membrane before applying actuation voltage. Based on the validation of DEA, different configurations of DEA were investigated. Helical dielectric elastomer actuator and origami dielectric elastomer actuator were investigated using theoretical modeling. Comparisons were made with FEM to validate the model. This study focus on the theoretical and FEM analysis of strain within the different configuration of DEA and how the actuation strain of the dielectric elastomer can be translated into contraction and/or bending of the actuator."--Abstract.


Shape Memory Composites Based on Polymers and Metals for 4D Printing

Shape Memory Composites Based on Polymers and Metals for 4D Printing

Author: Muni Raj Maurya

Publisher: Springer Nature

Published: 2022-05-18

Total Pages: 425

ISBN-13: 3030941140

DOWNLOAD EBOOK

Shape Memory Composites Based on Polymers and Metals for 4D Printing is a thorough discussion of the physics and chemistry behind this developing area of materials science. It provides readers with a clear exposition of shape-memory-composite (SMC) preparation techniques for 3D and 4D printing processes and explains how intelligent manufacturing technology may be applied in fields such as robotics, construction, medical science, and smart sensors. The book covers fundamental background knowledge on the synthesis of shape memory polymers (SMPs) and shape memory alloys (SMAs), and additive manufacturing techniques. Polymers and metals and their roles in 4D printing are dealt with separately, and applications of 4D printing are treated in their own chapter. The different alloy compositions and nanoparticle fillers in polymer composites are examined in detail, along with the key mechanisms involved in their processing. Hybrid nanofillers and synergistic composite mixtures, which are either in extensive current use or have shown promising outcomes in the field of 4D printing, are thoroughly discussed. Differences between these novel SMCs and traditional metal alloys, organic and inorganic composites are presented, and means by which they can improve mechanical properties that are triggered by external sources like magnetic field, temperature, and pH of solvent, are set out. This book provides practitioners, industrial researchers, and scholars with a state-of-the-art overview of SMP/SMA synthesis, additive manufacturing, modification in synthesis of SMCs for 4D printing, and their likely future applications.


Smart 3D Nanoprinting

Smart 3D Nanoprinting

Author: Ajit Behera

Publisher: CRC Press

Published: 2022-08-18

Total Pages: 343

ISBN-13: 1000637573

DOWNLOAD EBOOK

Examining smart 3D printing at the nanoscale, this book discusses various methods of fabrication, the presence of inherent defects and their annihilation, property analysis, and emerging applications across an array of industries. The book serves to bridge the gap between the concept of nanotechnology and the tailorable properties of smart 3D-print products. FEATURES Covers surface and interface analysis and smart technologies in 3D nanoprinting Details different materials, such as polymers, metals, semiconductors, glassceramics, and composites, as well as their selection criteria, fabrication, and defect analysis at nanoscale Describes optimization and modeling and the effect of machine parameters on 3D-printed products Discusses critical barriers and opportunities Explores emerging applications in manufacturing industries, such as aerospace, healthcare, automotive, energy, construction, and defense Smart 3D Nanoprinting: Fundamentals, Materials, and Applications is aimed at advanced students, researchers, and industry professionals in materials, manufacturing, chemical, and mechanical engineering. This book offers readers a comprehensive overview of the properties, opportunities, and applications of smart 3D nanoprinting.


Soft Actuators

Soft Actuators

Author: Kinji Asaka

Publisher: Springer

Published: 2014-11-17

Total Pages: 492

ISBN-13: 4431547673

DOWNLOAD EBOOK

The subject of this book is the current comprehensive research and development of soft actuators, and encompasses interdisciplinary studies of materials science, mechanics, electronics, robotics and bioscience. As an example, the book includes current research on actuators based on biomaterials to provide future perspectives for artificial muscle technology. Readers can obtain detailed, useful information about materials, methods of synthesis, fabrication and measurements. The topics covered here not only promote further research and development of soft actuators but also lead the way to their utilization and industrialization. One outstanding feature of the book is that it contains many color figures, diagrams and photographs clearly describing the mechanism, apparatus and motion of soft actuators. The chapter on modeling is conducive to more extensive design work in materials and devices and is especially useful in the development of practical applications. Readers can acquire the newest technology and information about the basic science and practical applications of flexible, lightweight and noiseless soft actuators, which are quite unlike conventional mechanical engines and electric motors. The new ideas offered in this volume will provide inspiration and encouragement to researchers and developers as they explore new fields of applications for soft actuators.


Liquid Crystal Elastomers

Liquid Crystal Elastomers

Author: Mark Warner

Publisher: Oxford University Press

Published: 2007-04-05

Total Pages: 423

ISBN-13: 9780199214860

DOWNLOAD EBOOK

This text is a primer for liquid crystals, polymers, rubber and elasticity. It is directed at physicists, chemists, material scientists, engineers and applied mathematicians at the graduate student level and beyond.