The 1999 European Wind Energy Conference and Exhibition was organized to review progress, and present and discuss the wind energy business, technology and science for the future. The Proceedings contain a selection of over 300 papers from the conference. They represent a significant update to the understanding of this increasingly important field of energy generation and cover a full range of topics.
Electric Power Systems: Advanced Forecasting Techniques and Optimal Generation Scheduling helps readers develop their skills in modeling, simulating, and optimizing electric power systems. Carefully balancing theory and practice, it presents novel, cutting-edge developments in forecasting and scheduling. The focus is on understanding and solving pivotal problems in the management of electric power generation systems. Methods for Coping with Uncertainty and Risk in Electric Power Generation Outlining real-world problems, the book begins with an overview of electric power generation systems. Since the ability to cope with uncertainty and risk is crucial for power generating companies, the second part of the book examines the latest methods and models for self-scheduling, load forecasting, short-term electricity price forecasting, and wind power forecasting. Toward Optimal Coordination between Hydro, Thermal, and Wind Power Using case studies, the third part of the book investigates how to achieve the most favorable use of available energy sources. Chapters in this section discuss price-based scheduling for generating companies, optimal scheduling of a hydro producer, hydro-thermal coordination, unit commitment with wind generators, and optimal optimization of multigeneration systems. Written in a pedagogical style that will appeal to graduate students, the book also expands on research results that are useful for engineers and researchers. It presents the latest techniques in increasingly important areas of power system operations and planning.
The depletion of global fossil fuel reserves combined with mounting environmental concerns has served to focus attention on the development of ecologically compatible and renewable alternative sources of energy. Wind energy, with its impressive growth rate of 40% over the last five years, is the fastest growing alternate source of energy in the world since its purely economic potential is complemented by its great positive environmental impact. The wind turbine, whether it may be a Horizontal Axis Wind Turbine (HAWT) or a Vertical Axis Wind Turbine (VAWT), offers a practical way to convert the wind energy into electrical or mechanical energy. Although this book focuses on the aerodynamic design and performance of VAWTs based on the Darrieus concept, it also discusses the comparison between HAWTs and VAWTs, future trends in design and the inherent socio-economic and environmental friendly aspects of wind energy as an alternate source of energy.
This four-volume set, edited by a leading expert in the field, brings together in one collection a series of papers that have been fundamental to the development of renewable energy as a defined discipline. Some of the papers were first published many years ago, but they remain classics in their fields and retain their relevance to the understanding of current issues. The papers have been selected with the assistance of an eminent international editorial board. The set includes a general introduction and each volume is introduced by a new overview essay, placing the selected papers in context. The range of subject matter is considerable, including coverage of all the main renewable technologies, the fundamental principles by which they function, and the issues around their deployment such as planning, integration and socio-economic assessment. Overall, the set provides students, teachers and researchers, confronted with thousands of journal articles, book chapters and grey literature stretching back decades, with a ready-made selection of and commentary on the most important key writings in renewable energy. It will be an essential reference for libraries concerned with energy, technology and the environment.
A COMPREHENSIVE REFERENCE TO THE MOST RECENT ADVANCEMENTS IN OFFSHORE WIND TECHNOLOGY Offshore Wind Energy Technology offers a reference based on the research material developed by the acclaimed Norwegian Research Centre for Offshore Wind Technology (NOWITECH) and material developed by the expert authors over the last 20 years. This comprehensive text covers critical topics such as wind energy conversion systems technology, control systems, grid connection and system integration, and novel structures including bottom-fixed and floating. The text also reviews the most current operation and maintenance strategies as well as technologies and design tools for novel offshore wind energy concepts. The text contains a wealth of mathematical derivations, tables, graphs, worked examples, and illustrative case studies. Authoritative and accessible, Offshore Wind Energy Technology: Contains coverage of electricity markets for offshore wind energy and then discusses the challenges posed by the cost and limited opportunities Discusses novel offshore wind turbine structures and floaters Features an analysis of the stochastic dynamics of offshore/marine structures Describes the logistics of planning, designing, building, and connecting an offshore wind farm Written for students and professionals in the field, Offshore Wind Energy Technology is a definitive resource that reviews all facets of offshore wind energy technology and grid connection.
The use of composites is growing in structural applications in many industries including aerospace, marine, wind turbine and civil engineering. There are uncertainties about the long term performance of these composites and how they will perform under cyclic fatigue loading. Fatigue life prediction of composites and composite structures provides a comprehensive review of fatigue damage and fatigue life prediction methodologies for composites and how they can be used in practice.After an introductory chapter, Part one reviews developments in ways of modelling composite fatigue life. The second part of the book reviews developments in predicting composite fatigue life under different conditions including constant and variable amplitude loading as well as multiaxial and cyclic loading. Part three then describes applications such as fatigue life prediction of bonded joints and wind turbine rotor blades as well as health monitoring of composite structures.With its distinguished editor and international team of contributors, Fatigue life prediction of composites and composite structures is a standard reference for industry and researchers working with composites and those concerned with the long-term performance and fatigue life of composite components and structures. - Examines past, present and future trends associated with fatigue life prediction of composite materials and structures - Assesses novel computational methods for fatigue life modelling and prediction of composite materials under constant amplitude loading - Specific chapters investigate fatigue life prediction of wind turbine rotor blades and bonded joints in composite structures
This far-reaching resource covers a full spectrum of multi-faceted considerations critical for energy generation decision makers considering the adoption or expansion of wind power facilities. It contextualizes pivotal technical information within the real complexities of economic, environmental, practical and socio-economic parameters. This matrix of coverage includes case studies and analysis from developed and developing regions, including North America and Europe, Asia, Latin America, the Middle-East and Africa. Crucial issues to power generation professionals and utilities such as: capacity credits; fuel saving; intermittency; penetration limits; relative cost of electricity by generation source; growth and cost trends; incentives; and wind integration issues are addressed. Other economic issues succinctly discussed inform financial commitment to a project, including investment matrices, strategies for economic evaluations, econometrics of wind energy, cost comparisons of various investment strategies, and cost comparisons with other energy sources. Due to its encompassing scope, this reference will be of distinct interest to practicing engineers, policy and decision makers, project planners, investors and students working in the area of wind energy for power generation.
Modern Portfolio Theory is a theory which was introduced by Markowitz, and which suggests the building of a portfolio with assets that have low or, in the best case, negative correlation. In times of financial crises, however, the positive diversification effect of a portfolio can fail when Traditional Assets are highly correlated. Therefore, many investors search for Alternative Asset classes, such as Renewable Energies, that tend to perform independently from capital market performance. 'Windfall Profit in Portfolio Diversification?' discusses the potential role of Renewable Energy investments in an institutional investor’s portfolio by applying the main concepts from Modern Portfolio Theory. Thereby, the empirical analysis uses a unique data set from one of the largest institutional investors in the field of Renewable Energies, including several wind and solar parks. The study received the Science Award 2012 of the German Alternative Investments Association ('Bundesverband Alternative Investments e.V.').
Renewable Energy Forecasting: From Models to Applications provides an overview of the state-of-the-art of renewable energy forecasting technology and its applications. After an introduction to the principles of meteorology and renewable energy generation, groups of chapters address forecasting models, very short-term forecasting, forecasting of extremes, and longer term forecasting. The final part of the book focuses on important applications of forecasting for power system management and in energy markets. Due to shrinking fossil fuel reserves and concerns about climate change, renewable energy holds an increasing share of the energy mix. Solar, wind, wave, and hydro energy are dependent on highly variable weather conditions, so their increased penetration will lead to strong fluctuations in the power injected into the electricity grid, which needs to be managed. Reliable, high quality forecasts of renewable power generation are therefore essential for the smooth integration of large amounts of solar, wind, wave, and hydropower into the grid as well as for the profitability and effectiveness of such renewable energy projects. - Offers comprehensive coverage of wind, solar, wave, and hydropower forecasting in one convenient volume - Addresses a topic that is growing in importance, given the increasing penetration of renewable energy in many countries - Reviews state-of-the-science techniques for renewable energy forecasting - Contains chapters on operational applications