3-Dimensional Process Simulation

3-Dimensional Process Simulation

Author: J. Lorenz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 207

ISBN-13: 3709169054

DOWNLOAD EBOOK

Whereas two-dimensional semiconductor process simulation has achieved a certain degree of maturity, three-dimensional process simulation is a newly emerging field in which most efforts are dedicated to necessary basic developments. Research in this area is promoted by the growing demand to obtain reliable information on device geometries and dopant distributions needed for three-dimensional device simulation, and challenged by the great algorithmic problems caused by moving interfaces and by the requirement to limit computation times and memory requirements. A workshop (Erlangen, September 5, 1995) provided a forum to discuss the industrial needs, technical problems, and solutions being developed in the field of three-dimensional semiconductor process simulation. Invited presentations from leading semiconductor companies and research Centers of Excellence from Japan, the USA, and Europe outlined novel numerical algorithms, physical models, and applications in this rapidly emerging field.


Technology CAD Systems

Technology CAD Systems

Author: Franz Fasching

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 313

ISBN-13: 370919315X

DOWNLOAD EBOOK

As the cost of developing new semiconductor technology at ever higher bit/gate densities continues to grow, the value of using accurate TCAD simu lation tools for design and development becomes more and more of a necessity to compete in today's business. The ability to tradeoff wafer starts in an advanced piloting facility for simulation analysis and optimization utilizing a "virtual fab" S/W tool set is a clear economical asset for any semiconductor development company. Consequently, development of more sophisticated, accurate, physics-based, and easy-to-use device and process modeling tools will receive continuing attention over the coming years. The cost of maintaining and paying for one's own internal modeling tool development effort, however, has caused many semiconductor development companies to consider replacing some or all of their internal tool development effort with the purchase of vendor modeling tools. While some (noteably larger) companies have insisted on maintaining their own internal modeling tool development organization, others have elected to depend totally on the tools offered by the TCAD vendors and have consequently reduced their mod eling staffs to a bare minimal support function. Others are seeking to combine the best of their internally developed tool suite with "robust", "proven" tools provided by the vendors, hoping to achieve a certain synergy as well as savings through this approach. In the following sections we describe IBM's internally developed suite of TCAD modeling tools and show several applications of the use of these tools.