Problems that beset Archimedes, Newton, Euler, Cauchy, Gauss, Monge, Steiner, and other great mathematical minds. Features squaring the circle, pi, and similar problems. No advanced math is required. Includes 100 problems with proofs.
Problems that beset Archimedes, Newton, Euler, Cauchy, Gauss, etc. Features squaring the circle, pi, similar problems. No advanced math is required. Includes 100 problems with proofs.
Both a challenge to mathematically inclined readers and a useful supplementary text for high school and college courses, One Hundred Problems in Elementary Mathematics presents an instructive, stimulating collection of problems. Many problems address such matters as numbers, equations, inequalities, points, polygons, circles, ellipses, space, polyhedra, and spheres. An equal number deal with more amusing or more practical subjects, such as a picnic ham, blood groups, rooks on a chessboard, and the doings of the ingenious Dr. Abracadabrus. Are the problems in this book really elementary? Perhaps not in the lay reader’s sense, for anyone who desires to solve these problems must know a fair amount of mathematics, up to calculus. Nevertheless, Professor Steinhaus has given complete, detailed solutions to every one of his 100 problems, and anyone who works through the solutions will painlessly learn an astonishing amount of mathematics. A final chapter provides a true test for the most proficient readers: 13 additional unsolved problems, including some for which the author himself does not know the solutions.
One of the 18th century's greatest mathematicians delivered these lectures at a training school for teachers. An exemplar among elementary expositions, they combine original ideas and elegant expression. 1898 edition.
Over 300 challenging problems in algebra, arithmetic, elementary number theory and trigonometry, selected from Mathematical Olympiads held at Moscow University. Only high school math needed. Includes complete solutions. Features 27 black-and-white illustrations. 1962 edition.
Sure-fire techniques of visualizing, dramatizing, and analyzing numbers promise to attract and retain students' attention and understanding. Topics include basic multiplication and division, algebra, word problems, graphs, negative numbers, fractions, many other practical applications of elementary mathematics. 1964 ed. Answers to Problems.
ABOUT THE BOOK The "Classic Text Series" is a collection of books written by the most famous mathematicians of their time and has been proven over the years as the most preferred concept-building tool to learn mathematics. Arihant's imprints of these books are a way of presenting these timeless classics. Compiled by various writers, the book "Problems in Elementary Mathematics" has been updated and deals with the modern treatment of complex concepts of Mathematics. Formulated as per the latest syllabus, this complete preparatory guide is accumulated with theories, Problems Solutions, and a good collection of examples for an in-depth understanding of the concepts. The unique features accumulated in this book are: 1. Complete coverage of syllabus in 3 major parts 2. Explain various concepts of Algebra, Geometry and Trigonometry in a lucid manner 3. Each chapter has unique problems to enhance fundamental knowledge of Mathematics 4. Solutions are provided in a great detailed manner 5. Enormous Examples for an in-depth understanding of topics 6. Works as an elementary textbook to build concepts TABLE OF CONTENT: Algebra, Geometry: A - Plane Geometry, B - Solid Geometry, Trigonometry.
Exciting, hands-on approach to understanding fundamental underpinnings of modern arithmetic, algebra, geometry and number systems examines their origins in early Egyptian, Babylonian, and Greek sources.
Studies of teachers in the U.S. often document insufficient subject matter knowledge in mathematics. Yet, these studies give few examples of the knowledge teachers need to support teaching, particularly the kind of teaching demanded by recent reforms in mathematics education. Knowing and Teaching Elementary Mathematics describes the nature and development of the knowledge that elementary teachers need to become accomplished mathematics teachers, and suggests why such knowledge seems more common in China than in the United States, despite the fact that Chinese teachers have less formal education than their U.S. counterparts. The anniversary edition of this bestselling volume includes the original studies that compare U.S and Chinese elementary school teachers’ mathematical understanding and offers a powerful framework for grasping the mathematical content necessary to understand and develop the thinking of school children. Highlighting notable changes in the field and the author’s work, this new edition includes an updated preface, introduction, and key journal articles that frame and contextualize this seminal work.
Over 300 unusual problems, ranging from easy to difficult, involving equations and inequalities, Diophantine equations, number theory, quadratic equations, logarithms, more. Detailed solutions, as well as brief answers, for all problems are provided.