Zinc Finger Proteins

Zinc Finger Proteins

Author: Shiro Iuchi

Publisher: Springer Science & Business Media

Published: 2007-03-06

Total Pages: 291

ISBN-13: 0387274219

DOWNLOAD EBOOK

In the early 1980s, a few scientists started working on a Xenopus transcription factor, TFIIIA. They soon discovered a novel domain associated with zinc, and named this domain "zinc finger. " Th e number of proteins with similar zinc fingers grew quickly and these proteins are now called C2H2, Cys2His2 or classical zinc finger proteins. To date, about 24,000 C2H2 zinc finger proteins have been recognized. Approximately 700 human genes, or more than 2% of the genome, have been estimated to encode C2H2 finger proteins. From the beginning these proteins were thought to be numerous, but no one could have predicted such a huge number. Perhaps thousands of scientists are now working on C2H2 zinc finger proteins fi-om variou s viewpoints. This field is a good example of how a new science begins with the insight of a few scientists and how it develops by efforts of numerous independent scientists, in contrast to a policy-driven scientific project, such as the Human Genome Project, with goals clearly set at its inception and with work performed by a huge collaboration throughout the world. As more zinc finger proteins were discovered, several subfamilies, such as C2C2, CCHC, CCCH, LIM, RING, TAZ, and FYVE emerged, increasing our understanding of zinc fingers. The knowledge was overwhelming. Moreover, scientists began defining the term "zinc finger" differently and using various names for identical zinc fingers. These complications may explain why no single comprehensive resource of zinc finger proteins was available before this publication.


Zinc Finger Proteins

Zinc Finger Proteins

Author: Shiro Iuchi

Publisher: Springer

Published: 2005-03-03

Total Pages: 276

ISBN-13: 0306482290

DOWNLOAD EBOOK

In the early 1980s, a few scientists started working on a Xenopus transcription factor, TFIIIA. They soon discovered a novel domain associated with zinc, and named this domain "zinc finger. " Th e number of proteins with similar zinc fingers grew quickly and these proteins are now called C2H2, Cys2His2 or classical zinc finger proteins. To date, about 24,000 C2H2 zinc finger proteins have been recognized. Approximately 700 human genes, or more than 2% of the genome, have been estimated to encode C2H2 finger proteins. From the beginning these proteins were thought to be numerous, but no one could have predicted such a huge number. Perhaps thousands of scientists are now working on C2H2 zinc finger proteins fi-om variou s viewpoints. This field is a good example of how a new science begins with the insight of a few scientists and how it develops by efforts of numerous independent scientists, in contrast to a policy-driven scientific project, such as the Human Genome Project, with goals clearly set at its inception and with work performed by a huge collaboration throughout the world. As more zinc finger proteins were discovered, several subfamilies, such as C2C2, CCHC, CCCH, LIM, RING, TAZ, and FYVE emerged, increasing our understanding of zinc fingers. The knowledge was overwhelming. Moreover, scientists began defining the term "zinc finger" differently and using various names for identical zinc fingers. These complications may explain why no single comprehensive resource of zinc finger proteins was available before this publication.


Zinc Fingers

Zinc Fingers

Author: Rolf Ciofani

Publisher: Nova Science Publishers

Published: 2012

Total Pages: 0

ISBN-13: 9781621002307

DOWNLOAD EBOOK

Zinc fingers are small protein structural motifs that can coordinate one or more zinc ions to help stabilize their folds. They can be classified into several different structural families and typically function as interaction modules that bind DNA, RNA, proteins or small molecules. In this book, the authors present current research in the study of the structure, properties and applications of zinc fingers.


Handbook of Epigenetics

Handbook of Epigenetics

Author: Trygve O Tollefsbol

Publisher: Academic Press

Published: 2017-07-10

Total Pages: 684

ISBN-13: 0128054778

DOWNLOAD EBOOK

Handbook of Epigenetics: The New Molecular and Medical Genetics, Second Edition, provides a comprehensive analysis of epigenetics, from basic biology, to clinical application. Epigenetics is considered by many to be the new genetics in that many biological phenomena are controlled, not through gene mutations, but rather through reversible and heritable epigenetic processes. These epigenetic processes range from DNA methylation to prions. The biological processes impacted by epigenetics are vast and encompass effects in lower organisms and humans that include tissue and organ regeneration, X-chromosome inactivation, stem cell differentiation, genomic imprinting, and aging. The first edition of this important work received excellent reviews; the second edition continues its comprehensive coverage adding more current research and new topics based on customer and reader reviews, including new discoveries, approved therapeutics, and clinical trials. From molecular mechanisms and epigenetic technology, to discoveries in human disease and clinical epigenetics, the nature and applications of the science is presented for those with interests ranging from the fundamental basis of epigenetics, to therapeutic interventions for epigenetic-based disorders. - Timely and comprehensive collection of fully up-to-date reviews on epigenetics that are organized into one volume and written by leading figures in the field - Covers the latest advances in many different areas of epigenetics, ranging from basic aspects, to technologies, to clinical medicine - Written at a verbal and technical level that can be understood by scientists and college students - Updated to include new epigenetic discoveries, newly approved therapeutics, and clinical trials


Translating Gene Therapy to the Clinic

Translating Gene Therapy to the Clinic

Author: Jeffrey Laurence

Publisher: Academic Press

Published: 2014-11-14

Total Pages: 347

ISBN-13: 0128005645

DOWNLOAD EBOOK

Translating Gene Therapy to the Clinic, edited by Dr. Jeffrey Laurence and Michael Franklin, follows the recent, much-lauded special issue of Translational Research in emphasizing clinical milestones and critical barriers to further progress in the clinic. This comprehensive text provides a background for understanding the techniques involved in human gene therapy trials, and expands upon the disease-specific situations in which these new approaches currently have the greatest therapeutic application or potential, and those areas most in need of future research. It emphasizes methods, tools, and experimental approaches used by leaders in the field of translational gene therapy. The book promotes cross-disciplinary communication between the sub-specialties of medicine, and remains unified in theme. - Presents impactful and widely supported research across the spectrum of science, method, implementation and clinical application - Offers disease-based coverage from expert clinician-scientists, covering everything from arthritis to congestive heart failure, as it details specific progress and barriers for current translational use - Provides key background information from immune response through genome engineering and gene transfer, relevant information for practicing clinicians contemplating enrolling patients in gene therapy trials


Genomics, Circuits, and Pathways in Clinical Neuropsychiatry

Genomics, Circuits, and Pathways in Clinical Neuropsychiatry

Author: Thomas Lehner

Publisher: Academic Press

Published: 2016-06-07

Total Pages: 798

ISBN-13: 0128005300

DOWNLOAD EBOOK

This foundational work comprehensively examines the current state of the genetics, genomics and brain circuitry of psychiatric and neurological disorders. It consolidates discoveries of specific genes and genomic regions associated with these conditions, the genetic and anatomic architecture of these syndromes, and addresses how recent advances in genomics are leading to a reappraisal of the biology underlying clinical neuroscience. In doing so, it critically examines the promise and limitations of these discoveries toward treatment, and to the interdisciplinary nature of understanding brain and behavior. Coverage includes new discoveries regarding autism, epilepsy, intellectual disability, dementias, movement disorders, language impairment, disorders of attention, schizophrenia, and bipolar disorder. Genomics, Circuits, and Pathways in Clinical Neuropsychiatry focuses on key concepts, challenges, findings, and methods in genetics, genomics, molecular pathways, brain circuitry, and related neurobiology of neurologic and psychiatric disorders. - Provides interdisciplinary appeal in psychiatry, neurology, neuroscience, and genetics - Identifies key concepts, methods, and findings - Includes coverage of multiple disorders from autism to schizophrenia - Reviews specific genes associated with disorders - Discusses the genetic architecture of these syndromes - Explains how recent findings are influencing the understanding of biology - Clarifies the promise of these findings for future treatment


Zinc Biochemistry, Physiology, and Homeostasis

Zinc Biochemistry, Physiology, and Homeostasis

Author: W. Maret

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 232

ISBN-13: 9401737282

DOWNLOAD EBOOK

Chapters in this book review the remarkable advances in the field of zinc biology over the last decade. Zinc is essential for life, in particular for growth and development, through its role in hundreds of zinc enzymes and thousands of zinc proteins. Its catalytic, structural, and regulatory functions in these proteins impact metabolism, gene expression, and signal transduction, including neurotransmission. Among the micronutrients, zinc may rank with iron as to its importance for public health. The topics covered range from single molecules to cells and to whole organisms: the chemistry, design, and application of fluorophores for the determination of cellular zinc; the role of zinc in proliferation, differentiation, and apoptosis of cells; proteins that transport, sense, and distribute zinc and together form a cellular homeostatic system; the coordination chemistry of zinc in metalloproteins; the role of zinc in the brain as a neuromodulator/transmitter; the dependence of the immune system on zinc; zinc homeostasis in the whole human body.


Gene Therapy for Viral Infections

Gene Therapy for Viral Infections

Author: Patrick Arbuthnot

Publisher: Academic Press

Published: 2015-06-01

Total Pages: 391

ISBN-13: 0124114520

DOWNLOAD EBOOK

Gene Therapy for Viral Infections provides a comprehensive review of the broader field of nucleic acid and its use in treating viral infections. The text bridges the gap between basic science and important clinical applications of the technology, providing a systematic, integrated review of the advances in nucleic acid-based antiviral drugs and the potential advantages of new technologies over current treatment options. Coverage begins with the fundamentals, exploring varying topics, including harnessing RNAi to silence viral gene expression, antiviral gene editing, viral gene therapy vectors, and non-viral vectors. Subsequent sections include detailed coverage of the developing use of gene therapy for the treatment of specific infections, the principles of rational design of antivirals, and the hurdles that currently face the further advancement of gene therapy technology. - Provides coverage of gene therapy for a variety of infections, including HBV, HCV, HIV, hemorrhagic fever viruses, and respiratory and other viral infections - Bridges the gap between the basic science and the important medical applications of this technology - Features a broad approach to the topic, including an essential overview and the applications of gene therapy, synthetic RNA, and other antiviral strategies that involve nucleic acid engineering - Presents perspectives on the future use of nucleic acids as a novel class of antiviral drugs - Arms the reader with the cutting-edge information needed to stay abreast of this developing field


Molecular and Cellular Effects of Nutrition on Disease Processes

Molecular and Cellular Effects of Nutrition on Disease Processes

Author: Grant N. Pierce

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 227

ISBN-13: 1461557631

DOWNLOAD EBOOK

This volume contains the proceedings of the 2nd World Conference of the International Society for Molecular Nutrition & Therapy. This conference was held on August 2-4, 1997, in Winnipeg, Canada. The goal of the conference was to advance our knowledge concerning the molecular events which link nutrition to various disease processes in the body. This volume represents an important compilation of unique articles addressing the molecular and cellular basis for the nutritional and therapeutic treatment of five general disease processes.


A Handbook of Transcription Factors

A Handbook of Transcription Factors

Author: Timothy R. Hughes

Publisher: Springer Science & Business Media

Published: 2011-05-10

Total Pages: 310

ISBN-13: 904819069X

DOWNLOAD EBOOK

Transcription factors are the molecules that the cell uses to interpret the genome: they possess sequence-specific DNA-binding activity, and either directly or indirectly influence the transcription of genes. In aggregate, transcription factors control gene expression and genome organization, and play a pivotal role in many aspects of physiology and evolution. This book provides a reference for major aspects of transcription factor function, encompassing a general catalogue of known transcription factor classes, origins and evolution of specific transcription factor types, methods for studying transcription factor binding sites in vitro, in vivo, and in silico, and mechanisms of interaction with chromatin and RNA polymerase.