Traditionally, small-group math instruction has been used as a format for reaching children who struggle to understand. Math coach Kassia Omohundro Wedekind uses small-group instruction as the centerpiece of her math workshop approach, engaging all students in rigorous "math exchanges." The key characteristics of these mathematical conversations are that they are: 1) short, focused sessions that bring all mathematical minds together, 2) responsive to the needs of the specific group of mathematicians, and 3) designed for meaningful, guided reflection. As in reading and writing workshop, students in math workshop become self-directed and independent while participating in a classroom community of learners. Through the math exchanges, students focus on number sense and the big ideas of mathematics. Teachers guide the conversations with small groups of students, mediating talk and thinking as students share problem-solving strategies, discuss how math works, and move toward more effective and efficient approaches and greater mathematical understanding. Although grounded in theory and research, Math Exchanges: Guiding Young Mathematicians in Small Group Meetings is written for practicing teachers and answers such questions as the following: How can I use a math workshop approach and follow a certain textbook or set of standards? How should I form small groups? How often should I meet with small groups? What should I focus on in small groups? How can I tell if my groups are making progress? What do small-group math exchanges look like, sound like, and feel like?
Ask mathematicians to describe mathematics and they' ll use words like playful, beautiful, and creative. Pose the same question to students and many will use words like boring, useless, and even humiliating. Becoming the Math Teacher You Wish You' d Had, author Tracy Zager helps teachers close this gap by making math class more like mathematics. Zager has spent years working with highly skilled math teachers in a diverse range of settings and grades and has compiled those' ideas from these vibrant classrooms into' this game-changing book. Inside you' ll find: ' How to Teach Student-Centered Mathematics:' Zager outlines a problem-solving approach to mathematics for elementary and middle school educators looking for new ways to inspire student learning Big Ideas, Practical Application:' This math book contains dozens of practical and accessible teaching techniques that focus on fundamental math concepts, including strategies that simulate connection of big ideas; rich tasks that encourage students to wonder, generalize, hypothesize, and persevere; and routines to teach students how to collaborate Key Topics for Elementary and Middle School Teachers:' Becoming the Math Teacher You Wish You' d Had' offers fresh perspectives on common challenges, from formative assessment to classroom management for elementary and middle school teachers No matter what level of math class you teach, Zager will coach you along chapter by chapter. All teachers can move towards increasingly authentic and delightful mathematics teaching and learning. This important book helps develop instructional techniques that will make the math classes we teach so much better than the math classes we took.
Math rocks! At least it does in the gifted hands of Sean Connolly, who blends middle school math with fantasy to create an exciting adventure in problem-solving. These word problems are perilous, do-or-die scenarios of blood-sucking vampires (How many months would it take a single vampire to completely take over a town of 500,000 people?), or a rowboat of 5 shipwrecked sailors with a single barrel of freshwater (How much can they drink, and for how long, before they go mad from thirst???). Each problem requires readers to dig deep into the tools they’re learning in school to figure out how to survive. Kids will love solving these problems. Sean Connolly knows how to make tough subjects exciting and he brings that same intuitive understanding of what inspires and challenges kids’ curiosity to the 24 problems in The Book of Perfectly Perilous Math. These problems are as fun to read as they are challenging to solve. They test readers on fractions, algebra, geometry, probability, expressions and equations, and more. Use geometry to fill in for the ship’s navigator and make it safely to the New World. Escape an evil Duke’s executioner by picking the right door—probability will save your neck.
Thinking Like a Mathematician focuses on high-interest, career-related topics in the elementary curriculum related to mathematics. Students will explore interdisciplinary content, foster creativity, and develop higher order thinking skills with activities aligned to relevant content area standards. Students will engage in exploration activities, complete mathematical challenges, and then apply what they have learned by making real-world connections. Thinking Like a Mathematician reflects key emphases of curricula from the Center for Gifted Education at William & Mary, including the development of process skills in various content areas and the enhancement of discipline-specific thinking and habits of mind through hands-on activities. Grade 3
Questioning has become one of the biggest challenges of teachers everywhere as they rise to the challenge of transforming their classrooms into communities of mathematicians. The CCSS Standards of Mathematical Practice require that children engage in problem solving with tenacity and confidence, use models as tools for thinking, and read and write viable arguments. This mandate demands that teachers foster a climate conducive to the generating of mathematics rather than the explanation of it. This book sets the bar for providing suggestions on how to question and confer--how to teach and mentor young mathematicians in elementary classrooms. Written by a leading author in the field, the book describes characteristics of powerful conferrals, and shows how to make the moments matter. Developmental frameworks, ways of assessing in the moment, and tips on how to help children get started and overcome math anxiety are all described as well as several example conferrals. Video clips of the author and several exemplary teachers conferring with students are provided throughout as illustrations.
Linear Algebra for the Young Mathematician is a careful, thorough, and rigorous introduction to linear algebra. It adopts a conceptual point of view, focusing on the notions of vector spaces and linear transformations, and it takes pains to provide proofs that bring out the essential ideas of the subject. It begins at the beginning, assuming no prior knowledge of the subject, but goes quite far, and it includes many topics not usually treated in introductory linear algebra texts, such as Jordan canonical form and the spectral theorem. While it concentrates on the finite-dimensional case, it treats the infinite-dimensional case as well. The book illustrates the centrality of linear algebra by providing numerous examples of its application within mathematics. It contains a wide variety of both conceptual and computational exercises at all levels, from the relatively straightforward to the quite challenging. Readers of this book will not only come away with the knowledge that the results of linear algebra are true, but also with a deep understanding of why they are true.
A collection of math problems for people of varying skills from high school through professional level, organized into fourteen categories, such as matrices, space, probability, and puzzles, and including hints and solutions.
A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.