Due to the advent of a new generation of detectors, X-ray polarimetry promises to join X-ray imaging, spectroscopy and timing as one of the main observational techniques in high energy astrophysics. This has renewed interest in the field, and indeed several polarimetric missions have recently been proposed. This volume provides a complete and up-to-date view of the subject for researchers in astrophysics. The contributors discuss the present status and perspectives of instruments, review current theoretical models, and examine future missions. As well as detailed papers, the book contains broad reviews that can be easily understood by astrophysicists new to the field.
Due to the advent of a new generation of detectors, X-ray polarimetry promises to join X-ray imaging, spectroscopy and timing as one of the main observational techniques in high energy astrophysics. This has renewed interest in the field, and indeed several polarimetric missions have recently been proposed. This volume provides a complete and up-to-date view of the subject for researchers in astrophysics. The contributors discuss the present status and perspectives of instruments, review current theoretical models, and examine future missions. As well as detailed papers, the book contains broad reviews that can be easily understood by astrophysicists new to the field.
Review of Volume 4:'The Handbook can be a good reference for a higher-degree science student approaching the subject or for an expert in a similar field in astronomical instrumentation. The reader requiring an in-depth presentation of a specific topic will be guided by the rich reference lists included at the end of each chapter.'The ObservatoryOur goal is to produce a comprehensive handbook of the current state of the art of astronomical instrumentation with a forward view encompassing the next decade. The target audience is graduate students with an interest in astronomical instrumentation, as well as practitioners interested in learning about the state of the art in another wavelength band or field closely related to the one in which they currently work. We assume a working knowledge of the fundamental theory: optics, semiconductor physics, etc. The purpose of this handbook is to bring together some of the leading experts in the world to discuss the frontier of astronomical instrumentation across the electromagnetic spectrum and extending into multimessenger astronomy.
This volume collects the proceedings of the 23rd International Course of Crystallography, entitled "X-ray and Neutron Dynamical Diffraction, Theory and Applications," which took place in the fascinating setting of Erice in Sicily, Italy. It was run as a NATO Advanced Studies Institute with A. Authier (France) and S. Lagomarsino (Italy) as codirectors, and L. Riva di Sanseverino and P. Spadon (Italy) as local organizers, R. Colella (USA) and B. K. Tanner (UK) being the two other members of the organizing committee. It was attended by about one hundred participants from twenty four different countries. Two basic theories may be used to describe the diffraction of radiation by crystalline matter. The first one, the so-called geometrical, or kinematical theory, is approximate and is applicable to small, highly imperfect crystals. It is used for the determination of crystal structures and describes the diffraction of powders and polycrystalline materials. The other one, the so-called dynamical theory, is applicable to perfect or nearly perfect crystals. For that reason, dynamical diffraction of X-rays and neutrons constitutes the theoretical basis of a great variety of applications such as: • the techniques used for the characterization of nearly perfect high technology materials, semiconductors, piezoelectric, electrooptic, ferroelectric, magnetic crystals, • the X-ray optical devices used in all modem applications of Synchrotron Radiation (EXAFS, High Resolution X-ray Diffractometry, magnetic and nuclear resonant scattering, topography, etc. ), and • X-ray and neutron interferometry.
This book serves as both a primer to astronomical polarimetry and an authoritative overview of its application to various types of astronomical objects from AGN, compact stars, binary systems, stars across the HR diagram, transients, the interstellar medium and solar system bodies. It starts with an historical perspective, a discussion of polarimetric theory, instrumentation and techniques in wave bands from the near infrared to gamma rays. The book presents the state of the art in astronomical polarimetry. It is motivated by the new X-ray polarimeters due to be launched in the next four years and improved optical polarimeters on large telescopes requiring a new analysis of polarimetric theory, methodology and results. This book will be suitable as advanced undergraduate companion text, a primer for graduate students and all researchers with an interest in astronomical polarimetry.
Radiation from astronomical objects generally shows some degree of polarization. Although this polarized radiation is usually only a small fraction of the total radiation, it often carries a wealth of information on the physical state and geometry of the emitting object and intervening material. Measurement of this polarized radiation is central to much modern astrophysical research. This handy volume provides a clear, comprehensive and concise introduction to astronomical polarimetry at all wavelengths. Starting from first principles and a simple physical picture of polarized radiation, the reader is introduced to all the key topics, including Stokes parameters, applications of polarimetry in astronomy, polarization algebra, polarization errors and calibration methods, and a selection of instruments (from radio to X-ray). The book is rounded off with a number of useful case studies, a collection of exercises, an extensive list of further reading and an informative index. This review of all aspects of astronomical polarization provides both an essential introduction for graduate students, and a valuable reference for practising astronomers.
Modern x-ray data, available through online archives, are important for many astronomical topics. However, using these data requires specialized techniques and software. Written for graduate students, professional astronomers and researchers who want to start working in this field, this book is a practical guide to x-ray astronomy. The handbook begins with x-ray optics, basic detector physics and CCDs, before focussing on data analysis. It introduces the reduction and calibration of x-ray data, scientific analysis, archives, statistical issues and the particular problems of highly extended sources. The book describes the main hardware used in x-ray astronomy, emphasizing the implications for data analysis. The concepts behind common x-ray astronomy data analysis software are explained. The appendices present reference material often required during data analysis.
“The polarization study of celestial objects is a valuable part of optical astronomy, and the author has done exceptionally well in bringing together contributions treating all aspects of the polarimetry field. . . . The first section contains a fine introduction and an excellent and definitive history of the subject. . . . The volume is well illustrated. . . . Highly recommended.”—Choice “The high quality of this book is clearly due to strict editorial attention to each paper and the discussions. Gehrels’s book will surely stand for many years as the fundamental reference source for polarization studies in astronomy as well as in atmospheric physics.”—Journal of the Association of Lunar and Planetary Observers
The first edition of Food Analysis: Theory and Practice was published in 1971 and was revised in 1978. The second edition was published in 1987, and in 1993 we found it necessary to prepare a third edition to reflect and cover the most recent advances in the field of food analysis. A complete revision of a book is an arduous and anguished task. The following are challenges that we wanted to address in this revision: to update the material without eliminating classic and time-preserved and honored methods used by the food analyst; to broaden and deepen the coverage and scope without increasing the size of the book; and to produce a textbook (for senior undergraduate and graduate students) with regard to objectives, scope, and outlay while providing a reference and resource for the worker and researcher in the field of food analysis. To meet those challenges we added much new material and took out practically the same amount of "rel atively outdated" material. Every chapter has been extensively updated and revised; many of the pictures in the previous editions were deleted and, whenever available and appropriate, were replaced by diagrams or flow sheets. In Part I we have expanded the seetions on sampling, preparation of sam pIes, reporting results, and reliability of analyses.