Selected Papers of Abdus Salam

Selected Papers of Abdus Salam

Author: Abdus Salam

Publisher: World Scientific

Published: 1994

Total Pages: 700

ISBN-13: 9789810216634

DOWNLOAD EBOOK

This is a selection from over 250 papers published by Abdus Salam. Professor Salam has been Professor of Theoretical Physics at Imperial College, London and Director of the International Centre for Theoretical Physics in Trieste, for which he was largely responsible for creating. He is one of the most distinguished theoretical physicists of his generation and won the Nobel Prize for Physics in 1979 for his work on the unification of electromagnetic and weak interactions. He is well known for his deep interest in the development of scientific research in the third world (to which ICTP is devoted) and has taken a leading part in setting up the Third World Academy. His research work has ranged widely over quantum field theory and all aspects of the theory of elementary particles and more recently into other fields, including high-temperature superconductivity and theoretical biology. The papers selected represent a cross section of his work covering the entire period of 50 years from his student days to the present.


Multiple Parton Interactions At The Lhc

Multiple Parton Interactions At The Lhc

Author: Paolo Bartalini

Publisher: World Scientific Publishing

Published: 2018-11-02

Total Pages: 471

ISBN-13: 981322777X

DOWNLOAD EBOOK

Many high-energy collider experiments (including the current Large Hadron Collider at CERN) involve the collision of hadrons. Hadrons are composite particles consisting of partons (quarks and gluons), and this means that in any hadron-hadron collision there will typically be multiple collisions of the constituents — i.e. multiple parton interactions (MPI). Understanding the nature of the MPI is important in terms of searching for new physics in the products of the scatters, and also in its own right to gain a greater understanding of hadron structure. This book aims at providing a pedagogical introduction and a comprehensive review of different research lines linked by an involvement of MPI phenomena. It is written by pioneers as well as young leading scientists, and reviews both experimental findings and theoretical developments, discussing also the remaining open issues.


Perspectives On Supersymmetry

Perspectives On Supersymmetry

Author: Gordon Kane

Publisher: World Scientific

Published: 1998-07-03

Total Pages: 503

ISBN-13: 9814495824

DOWNLOAD EBOOK

Supersymmetry is at an exciting stage of development. It extends the Standard Model of particle physics into a more powerful theory that both explains more and allows more questions to be addressed. Most important, it opens a window for studying and testing fundamental theories at the Planck scale. Experimentally we are finally entering the intensity and energy regions where superpartners are likely to be detected, and then studied. There has been progress in understanding the remarkable physics implications of supersymmetry, including the derivation of the Higgs mechanism, the unification of the Standard Model forces, cosmological connections such as a candidate for the cold dark matter of the universe and the scalar fields that drive inflation and their potential, the relationship to Planck scale theories, and more.While there are a number of reviews and books where the mathematical structure and uses of supersymmetry can be learned, there are few where the particle physics is the main focus. This book fills that gap. It begins with an excellent pedagogical introduction to the physics and methods and formalism of supersymmetry, by S Martin, which is accessible to anyone with a basic knowledge of the Standard Model of particle physics. Next is an overview of open questions by K Dienes and C Kolda, followed by chapters on topics ranging from how to detect superpartners to connections with Planck scale theories, by leading experts.This invaluable book will allow any interested physicist to understand the coming experimental and theoretical progress in supersymmetry, and will also help students and workers to quickly learn new aspects of supersymmetry they want to pursue.


Applied N

Applied N

Author: Pran Nath

Publisher: World Scientific

Published: 1984

Total Pages: 120

ISBN-13: 9789971966485

DOWNLOAD EBOOK

These lectures give an elementary introduction to the important recent developments of the applications of N=1 supergravity to the construction of unified models of elementary particle interactions. Topics covered include couplings of supergravity with matter, spontaneous symmetry breaking and the super-higgs effect, construction of supergravity unified models, and the phenomenon of SU(2) x U(1) electroweak-symmetry breaking by supergravity. Experimental consequences of N-1 supergravity unified theory, in particular, the possible supersymmetric decays of the W± and Z0 bosons, are also discussed. The treatment presented encompasses a broad class of models, both of the tree breaking as well as the radiative breaking of SU(2) x U(1). Rules of tensor calculus and the explicit construction of the Lagrangian of the Supergravity-matter couplings are given in the appendix.


Quantum Field Theory

Quantum Field Theory

Author: Ronald Kleiss

Publisher: Cambridge University Press

Published: 2021-06-10

Total Pages: 563

ISBN-13: 1108486215

DOWNLOAD EBOOK

A diagrammatic approach to introducing quantum field theory to graduate students in particle physics using Feynman diagrams.


Higgs Discovery

Higgs Discovery

Author: Lisa Randall

Publisher: Harper Collins

Published: 2012-07-24

Total Pages: 94

ISBN-13: 0062245317

DOWNLOAD EBOOK

On July 4, 2012, physicists at the Large Hadron Collider in Geneva madehistory when they discovered an entirely new type of subatomic particle that many scientists believe is the Higgs boson. For forty years, physicists searched for this capstone to the Standard Model of particle physics—the theory that describes both the most elementary components that are known in matter and the forces through which they interact. This particle points to the Higgs field, which provides the key to understanding why elementary particles have mass. In Higgs Discovery, Lisa Randall explains the science behind this monumental discovery, its exhilarating implications, and the power of empty space.


CP Violation Without Strangeness

CP Violation Without Strangeness

Author: Iosif B. Khriplovich

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 241

ISBN-13: 3642608388

DOWNLOAD EBOOK

Electric dipole moments (EDMs) have interested physicists since 1950, when it was first suggested that there was no experimental evidence that nuclear forces are symmetric under parity (P) transformation. This question was regarded as speculative because the existence of an EDM, in addition to P violation, requires a violation of time-reversal (T) symmetry. In 1964 it was discovered that the invariance under CP transformation, which combines charge conjugation (C) with parity, is violated in K-meson decays. This provided a new incentive for EDM searches. Since the combined operations of CPT are expected to leave a system invariant, breakdown of CP invariance should be accompanied by a violation of time-reversal symmetry. Thus there is a reason to expect that EDMs should exist at some level. The original neutron EDM experiments were later supplemented with checks of T invariance in atoms and molecules. These investigations are pursued now by many groups. Over the years, the upper limit on the neutron EDM has been improved by seven orders of magnitude, and the upper limit on the electron EDM obtained in atomic experiments is even more strict.