Bone Pathology is the second edition of the book, A Compendium of Skeletal Pathology that published 10 years ago. Similar to the prior edition, this book complements standard pathology texts and blends new but relatively established information on the molecular biology of the bone. Serving as a bench-side companion to the surgical pathologist, this new edition reflects new advances in our understanding of the molecular biology of bone. New chapters on soft-tissue sarcomas and soft-tissue tumors have been added as well as several additional chapters such as Soft-tissue pathology and Biomechanics. The volume is written by experts who are established in the field of musculoskeletal diseases. Bone Pathology is a combined effort from authors of different specialties including surgeons, pathologists, radiologists and basic scientists all of whom have in common an interest in bone diseases. It will be of great value to surgical pathology residents as well as practicing pathologists, skeletal radiologists, orthopedic surgeons and medical students.
This book focuses on the systems biomechanics of bone remodeling that provide a multiscale platform for bone adaptation, spanning the cellular, tissue, and organ levels. The mathematical model explained in each section provides concrete examples of in silico approaches for bone adaptation. It will be immensely useful for readers interested in bone morphology and metabolism and will serve as an effective bridge connecting mechanics, cellular and molecular biology, and medical sciences. These in silico approaches towards exploring the mechanisms by which the functioning of dynamic living systems is established and maintained have potential for facilitating the efforts of graduate students and young researchers pioneering new frontiers of biomechanics.
This textbook describes the biomechanics of bone, cartilage, tendons and ligaments. It is rigorous in its approach to the mechanical properties of the skeleton yet it does not neglect the biological properties of skeletal tissue or require mathematics beyond calculus. Time is taken to introduce basic mechanical and biological concepts, and the approaches used for some of the engineering analyses are purposefully limited. The book is an effective bridge between engineering, veterinary, biological and medical disciplines and will be welcomed by students and researchers in biomechanics, orthopedics, physical anthropology, zoology and veterinary science. This book also: Maximizes reader insights into the mechanical properties of bone, fatigue and fracture resistance of bone and mechanical adaptability of the skeleton Illustrates synovial joint mechanics and mechanical properties of ligaments and tendons in an easy-to-understand way Provides exercises at the end of each chapter
Biological Mechanisms of Tooth Movement This new edition continues to be an authoritative reference to the scientific foundations underpinning clinical orthodontics The newly and thoroughly revised Third Edition of Biological Mechanisms of Tooth Movement delivers a comprehensive reference for orthodontic trainees and specialists. It is fully updated to include new chapters on personalized orthodontics as well as the inflammatory process occurring in the dental and paradental tissues. It is heavily illustrated throughout, making it easier for readers to understand and retain the information discussed within. The topics covered range from bone biology, the effects of mechanical loading on tissues and cells, genetics, tissue remodeling, and the effects of diet, drugs, and systemic diseases. The Third Edition of Biological Mechanisms of Tooth Movement features seven sections that cover subjects such as: The development of biological concepts in orthodontics, including the cellular and molecular biology behind orthodontic tooth movement Mechanics meets biology, including the effects of mechanical loading on hard and soft tissues and cells, and biological reactions to temporary anchorage devices Inflammation and orthodontics, including markers for tissue remodeling in the gingival crevicular fluid and saliva Personalized diagnosis and treatment based on genomic criteria, including the genetic influences on orthodontic tooth movement Rapid orthodontics, including methods to accelerate or decelerate orthodontic tooth movement Perfect for residents and PhD students of orthodontic and periodontal programs, Biological Mechanisms of Tooth Movement is also useful to academics, clinicians, bone biologists, and researchers with an interest in the mechanics and biology of tooth movement.
Tissue Repair, Contraction and the Myofibroblast summarizes the latest findings concerning the biology of the myofibroblast, a cell involved in the evolution and contraction of granulation tissue and of fibrotic changes. Coverage shows that the myofibroblast is responsible for the development of hypertrophic scars, pulmonary and renal fibrosis and bronchial asthma. Reviews the cell biology and pathology of the myofibroblast as well as mechanisms of fibrosis evolution in many organs and tissues.