This textbook introduces Wireless Powered Communication Networks (WPCNs) as a promising paradigm to overcome the energy bottleneck suffered by traditional wireless communication networks, as well as emerging Internet-of-Things networks. It selectively spans a coherent spectrum of fundamental aspects in WPCNs, such as wireless energy transfer (WEH) techniques, radio frequency (RF) energy harvesting receiver model, simultaneous wireless information and power transfer (SWIPT), as well as the rate-energy tradeoff arising from the joint transmission of information and energy using the same waveform. It covers network models for WPCNs, including the baseline and dual-hop WPCN models and a variety of related extensions. This book further examines the key factors including throughput, fairness, and security that must be taken into account for impeccable operation of WPCNs. The new IoT applications are targeted as a key element in those factors. It will also include exercises and examples throughout the book, as well as their PLS solutions. This is the first textbook examining the current research to provide a unified view of wireless power transfer (WPT) and information transmission in WPCNs from a physical layer security (PLS) perspective. Focused on designing efficient secure transmission schemes, analyzing energy evolvement process, and evaluating secrecy outage performance under different channel state information (CSI), the results presented in this book shed light on how to best balance security and throughput with prudent use of harvested energy in WCNs. It also provides an overview of the WPCNs by introducing the background of WPT, followed by a summary of the research conducted in the field. The authors describe the physical-layer security (PLS) problem in WPCNs, including the causes and the impacts of the problem on the performance of WPCNs. The authors extend the discussions by introducing the applications of WPCNs in the IoT. From the Internet of Things (IoT) point of view, this textbook reviews the opportunities and challenges for the lately-emerged WPCN to seamlessly integrate into the IoT ecosystem. It specifically addresses the maximization problem of uplink and downlink sum-throughout in a dual-hop WPCN, while taking fairness among WPCN users as a constraint. The results provided in this book reveal valuable insights into improving the design and deployment of future WPCNs in the upcoming IoT environment. This textbook targets advanced-level students studying wireless communications and research engineers working in this field. Industry engineers in mobile device and network development business with an interest in WPCNs and IoT, as well as their PLS solutions, will also find this book useful.
Wireless Communication Networks Supported by Autonomous UAVs and Mobile Ground Robots covers wireless sensor networks and cellular networks. For wireless sensor networks, the book presents approaches using mobile robots or UAVs to collect sensory data from sensor nodes. For cellular networks, it discusses the approaches to using UAVs to work as aerial base stations to serve cellular users. In addition, the book covers the challenges involved in these two networks, existing approaches (e.g., how to use the public transportation vehicles to play the role of mobile sinks to collect sensory data from sensor nodes), and potential methods to address open questions. - Gives a comprehensive understanding of the development of mobile robot-supported wireless communication approaches - Provides the latest approaches of mobile robot-supported wireless communication, including scheduling approaches with multiple robots and the online and reactive navigation algorithm - Covers interesting research scenarios that include the system model, problem statement, solution and results so that readers will be able to design their own system - Presents unresolved research issues and future research directions
This book provides a unified view on the state-of-the-art of cognitive radio technology. It includes a set of research and survey articles featuring the recent advances in theory and applications of cognitive radio technology for the next generation (e.g., fourth generation) wireless communication networks. The contributed articles cover both the theoretical concepts (e.g., information-theoretic analysis) and system-level implementation issues.
This book is the first systematic exposition on the emerging domain of wireless power transfer in ad hoc communication networks. It selectively spans a coherent, large spectrum of fundamental aspects of wireless power transfer, such as mobility management in the network, combined wireless power and information transfer, energy flow among network devices, joint activities with wireless power transfer (routing, data gathering and solar energy harvesting), and safety provisioning through electromagnetic radiation control, as well as fundamental and novel circuits and technologies enabling the wide application of wireless powering. Comprising a total of 27 chapters, contributed by leading experts, the content is organized into six thematic sections: technologies, communication, mobility, energy flow, joint operations, and electromagnetic radiation awareness. It will be valuable for researchers, engineers, educators, and students, and it may also be used as a supplement to academic courses on algorithmic applications, wireless protocols, distributed computing, and networking.
This book provides comprehensive coverage of mobile data networking and mobile communications under a single cover for diverse audiences including managers, practicing engineers, and students who need to understand this industry. In the last two decades, many books have been written on the subject of wireless communications and networking. However, mobile data networking and mobile communications were not fully addressed in a unified fashion. This book fills that gap in the literature and is written to provide essentials of wireless communications and wireless networking, including Wireless Personal Area Networks (WPAN), Wireless Local Area Networks (WLAN), and Wireless Wide Area Networks (WWAN). The first ten chapters of the book focus on the fundamentals that are required to study mobile data networking and mobile communications. Numerous solved examples have been included to show applications of theoretical concepts. In addition, unsolved problems are given at the end of each chapter for practice. (A solutions manual will be available.)After introducing fundamental concepts, the book focuses on mobile networking aspects. Four chapters are devoted on the discussion of WPAN, WLAN, WWAN, and internetworking between WLAN and WWAN. Remaining seven chapters deal with other aspects of mobile communications such as mobility management, security, cellular network planning, and 4G systems.A unique feature of this book that is missing in most of the available books on wireless communications and networking is a balance between the theoretical and practical concepts. Moreover, this book can be used to teach a one/two semester course in mobile data networking and mobile communications to ECE and CS students.*Details the essentials of Wireless Personal Area Networks(WPAN), Wireless Local Are Networks (WLAN), and Wireless Wide Area Networks (WWAN)*Comprehensive and up-to-date coverage including the latest in standards and 4G technology*Suitable for classroom use in senior/first year grad level courses. Solutions manual and other instructor support available
Presents state-of-the-art research on green radio communications and networking technology to researchers and professionals working in wireless communication.
This book provides and assesses the techniques required for the realization of practical wireless-powered backscatter systems for large-scale and intelligent IoT networks. It explores the deployment, reliability, and security aspects of backscatter devices for both indoor and outdoor environments. The book also sheds light on some of the recently evolving technologies such as artificial intelligence/ machine learning, non-orthogonal multiple access (NOMA), and multi-tone carrier techniques and identifies their application in backscatter communications. In addition, it offers a valuable blueprint for future studies in the domains of intelligent reflective surfaces, ambient backscatter communications and massive IoT networks.
This unified 2001 treatment of game theory focuses on finding state-of-the-art solutions to issues surrounding the next generation of wireless and communications networks. The key results and tools of game theory are covered, as are various real-world technologies and a wide range of techniques for modeling, design and analysis.