Neural Engineering, 2nd Edition, contains reviews and discussions of contemporary and relevant topics by leading investigators in the field. It is intended to serve as a textbook at the graduate and advanced undergraduate level in a bioengineering curriculum. This principles and applications approach to neural engineering is essential reading for all academics, biomedical engineers, neuroscientists, neurophysiologists, and industry professionals wishing to take advantage of the latest and greatest in this emerging field.
The use of neural networks is permeating every area of signal processing. They can provide powerful means for solving many problems, especially in nonlinear, real-time, adaptive, and blind signal processing. The Handbook of Neural Network Signal Processing brings together applications that were previously scattered among various publications to provide an up-to-date, detailed treatment of the subject from an engineering point of view. The authors cover basic principles, modeling, algorithms, architectures, implementation procedures, and well-designed simulation examples of audio, video, speech, communication, geophysical, sonar, radar, medical, and many other signals. The subject of neural networks and their application to signal processing is constantly improving. You need a handy reference that will inform you of current applications in this new area. The Handbook of Neural Network Signal Processing provides this much needed service for all engineers and scientists in the field.
This book focuses on the frontiers of neural interface technology, including hardware, software, neural decoding and encoding, control systems, and system integration. It also discusses applications for neuroprosthetics, neural diseases and neurorobotics, and the toolkits for basic neuroscience. A neural interface establishes a direct communication channel with the central or peripheral nervous system (CNS or PNS), and enables the nervous system to interact directly with the external devices. Recent advances in neuroscience and engineering are speeding up neural interface technology, paving the way for assisting, augmenting, repairing or restoring sensorimotor and other cognitive functions impaired due to neurological disease or trauma, and so improving the quality of life of those affected. Neural interfaces are now being explored in applications as diverse as rehabilitation, accessibility, gaming, education, recreation, robotics and human enhancement. Neural interfaces also represent a powerful tool to address fundamental questions in neuroscience. Recent decades have witnessed tremendous advances in the field, with a huge impact not only in the development of neuroprosthetics, but also in our basic understanding of brain function. Neural interface technology can be seen as a bridge across the traditional engineering and basic neuroscience. This book provides researchers, graduate and upper undergraduate students from a wide range of disciplines with a cutting-edge and comprehensive summary of neural interface engineering research.
Wireless Cortical Implantable Systems examines the design for data acquisition and transmission in cortical implants. The first part of the book covers existing system level cortical implants, as well as future devices. The authors discuss the major constraints in terms of microelectronic integrations are presented. The second part of the book focuses on system-level as well as circuit and system level solutions to the development of ultra low-power and low-noise microelectronics for cortical implants. Existing solutions are presented and novel methods and solutions proposed. The third part of the book focuses on the usage of digital impulse radio ultra wide band transmission as an efficient method to transmit cortically neural recorded data at high data rate to the outside world. Original architectural and circuit and system solutions are discussed.
Integrated circuits and microsystems play a vital role in a variety of biomedical applications including life-saving/changing miniature medical devices, surgical procedures with less invasiveness and morbidity, low-cost preventive healthcare solutions for daily life, solutions for effective chronic disease management, point-of-care diagnosis for early disease detection, high-throughput bio sequencing and drug screening and groundbreaking brain-machine interfaces based on a deep understanding of human intelligence. In response to such strong demands for biomedical circuits and systems, a considerable amount of effort has been devoted to the research and development in this area, both by industry and academia, over recent years. This book, which belongs to the “Tutorials in Circuits and Systems” series, provides readers with an overview of new developments in the field of biomedical circuits and systems. It covers basic information about system-level and circuit-level requirements, operation principles, key factors of considerations, and design/implementation techniques, as well as recent advances in integrated circuits and microsystems for emerging biomedical applications. Technical topics covered in this book include: Biomedical Microsystem Integration; Biomedical Sensor Interface Circuits; Neural Stimulation Circuits; Wireless Power Transfer Circuits for Biomedical Microsystems; Artificial Intelligence Processors for Biomedical Circuits and Systems; Neuro-Inspired Computing and Neuromorphic Processors for Biomedical Circuits and Systems. This book is ideal for personnel in medical devices and biomedical engineering industries as well as academic staff and postgraduate/research students in biomedical circuits and systems.
Low-power sensors and their applications in various fields ranging from military to civilian lives have made tremendous progress in the recent years. Low-power and extended battery life are the key focuses for long term, reliable and easy operation of these sensors. Sensors and Low Power Signal Processing provides a general overview of a sensor’s working principle and a discussion of the emerging sensor technologies including chemical, electro-chemical and MEMS based sensors. Also included is a discussion on design challenges associated with low-power analog circuits and the schemes to overcome them. Finally, a short discussion of some of the simple wireless telemetry schemes best suited for low-power sensor applications and sensor packaging issues is discussed. Applications and sensor prototypes included are environmental monitoring, health care monitoring and issues related to the development of sensor prototypes and associated electronics to achieve high signal-to-noise ratio will also be presented.
Here the renowned editor Evgeny Katz has chosen contributions that cover a wide range of examples and issues in implantable bioelectronics, resulting in an excellent overview of the topic. The various implants covered include biosensoric and prosthetic devices, as well as neural and brain implants, while ethical issues, suitable materials, biocompatibility, and energy-harvesting devices are also discussed. A must-have for both newcomers and established researchers in this interdisciplinary field that connects scientists from chemistry, material science, biology, medicine, and electrical engineering.
Technological advances have greatly increased the potential for, and practicability of, using medical neurotechnologies to revolutionize how a wide array of neurological and nervous system diseases and dysfunctions are treated. These technologies have the potential to help reduce the impact of symptoms in neurological disorders such as Parkinson’s Disease and depression as well as help regain lost function caused by spinal cord damage or nerve damage. Medical Neurobionics is a concise overview of the biological underpinnings of neurotechnologies, the development process for these technologies, and the practical application of these advances in clinical settings. Medical Neurobionics is divided into three sections. The first section focuses specifically on providing a sound foundational understanding of the biological mechanisms that support the development of neurotechnologies. The second section looks at the efforts being carried out to develop new and exciting bioengineering advances. The book then closes with chapters that discuss practical clinical application and explore the ethical questions that surround neurobionics. A timely work that provides readers with a useful introduction to the field, Medical Neurobionics will be an essential book for neuroscientists, neuroengineers, biomedical researchers, and industry personnel.
Supported with over 280 illustrations and over 160 equations, the book offers cutting-edge guidance on designing integrated circuits for wireless biosensing, body implants, biosensing interfaces, and molecular biology. You discover innovative design techniques and novel materials to help you achieve higher levels circuit and system performance.