Cases, while always interesting to read, are more effective when discussed under the guidance of a skillful leader. Because many educators are new to the case method of instruction, particularly in the subject area of secondary mathematics, this facilitator's guide is an essential companion to Windows on Teaching Math: Cases of Middle and Secondary Classrooms. In this guide, Katherine Merseth provides specific teaching notes that correspond to each case, helping educators to successfully use Windows on Teaching Math in a teacher education course or professional development workshop.
A practical hands-on guide to improving the teaching of mathematics. Provides a collection of cases that blend important mathematics content with the real complexities of school and classroom life.
This book challenges some of the conventional wisdoms on the learning of mathematics. The authors use the computer as a window onto mathematical meaning-making. The pivot of their theory is the idea of webbing, which explains how someone struggling with a new mathematical idea can draw on supportive knowledge, and reconciles the individual's role in mathematical learning with the part played by epistemological, social and cultural forces.
As Miki Murray proves, mathematics vocabulary has the power to enhance the conceptual learning of mathematics for middle school students. It's an essential tool to help them to express their mathematical thinking coherently and clearly to peers and teachers, to share problem-solving techniques, to gain confidence, and to participate in classroom discourse. Murray offers a range of strategies that highlight the important role language plays in the learning of math. Grounded in research and developed from more than 40 years of teaching, reflecting, and learning, Murray's proven strategies are immediately usable or adaptable by teachers.
This book collects nine related mathematical essays which will intrigue and inform. From the reviews: "The authors put their writing where their talents are, and students get to see just how alive mathematics is...there is much to commend the book. It contains plenty of interesting mathematics, often going in unusual directions. I like the diagrams; the authors have chosen mathematics that involves especially pretty ones." --THE MATHEMATICAL ASSOCIATION OF AMERICA
"This book is a game changer! Strengths-Based Teaching and Learning in Mathematics: 5 Teaching Turnarounds for Grades K- 6 goes beyond simply providing information by sharing a pathway for changing practice. . . Focusing on our students’ strengths should be routine and can be lost in the day-to-day teaching demands. A teacher using these approaches can change the trajectory of students’ lives forever. All teachers need this resource! Connie S. Schrock Emporia State University National Council of Supervisors of Mathematics President, 2017-2019 NEW COVID RESOURCES ADDED: A Parent’s Toolkit to Strengths-Based Learning in Math is now available on the book’s companion website to support families engaged in math learning at home. This toolkit provides a variety of home-based activities and games for families to engage in together. Your game plan for unlocking mathematics by focusing on students’ strengths. We often evaluate student thinking and their work from a deficit point of view, particularly in mathematics, where many teachers have been taught that their role is to diagnose and eradicate students’ misconceptions. But what if instead of focusing on what students don’t know or haven’t mastered, we identify their mathematical strengths and build next instructional steps on students’ points of power? Beth McCord Kobett and Karen S. Karp answer this question and others by highlighting five key teaching turnarounds for improving students’ mathematics learning: identify teaching strengths, discover and leverage students’ strengths, design instruction from a strengths-based perspective, help students identify their points of power, and promote strengths in the school community and at home. Each chapter provides opportunities to stop and consider current practice, reflect, and transfer practice while also sharing · Downloadable resources, activities, and tools · Examples of student work within Grades K–6 · Real teachers’ notes and reflections for discussion It’s time to turn around our approach to mathematics instruction, end deficit thinking, and nurture each student’s mathematical strengths by emphasizing what makes them each unique and powerful.
′What a super book! It is absolutely packed with practical ideas and activities to help you love maths, and love teaching and/or learning it. It certainly helps to develop an enthusiasm for a subject most adults tend to say "I′m no good at..."′ - Early Years Educator ‘A wonderful book, packed with practical ideas and activities to help all students love maths.’ - Jo Boaler, Professor of Mathematics Education, Stanford University Fostering an enthusiasm for mathematics in young children is a vital part of supporting their mathematical development. Underpinned by subject and pedagogical knowledge, case studies and research-based perspectives, the authors provide clear guidance on how to support young children′s learning and understanding in an effective and engaging way. Contemporary approaches to developing essential mathematical learning for young children are explored, including: play, practical activities and talk for mathematics outdoor learning understanding pattern counting, calculation and place value measures and shape problem solving and representing mathematics assessment working with parents. Written for both trainees and practitioners working with children aged 0 to 8 years, including those studying for Early Years and Early Childhood degrees and those on Primary PGCE and Primary Education courses, this book offers mathematical subject knowledge and teaching ideas in one volume. Helen Taylor is Course Leader of PGCE Primary Part-time Mathematics at Canterbury Christ Church University. Andrew Harris is Course Leader of PGCE Modular Mathematics at Canterbury Christ Church University.
Mathematics education will never truly improve until it adequately addresses those students whom the system has most failed. The 2018 volume of Annual Perspectives in Mathematics Education (APME) series showcases the efforts of classroom teachers, school counselors and administrators, teacher educators, and education researchers to ensure mathematics teaching and learning is a humane, positive, and powerful experience for students who are Black, Indigenous, and/or Latinx. The book's chapters are grouped into three sections: Attending to Students' Identities through Learning, Professional Development That Embraces Community, and Principles for Teaching and Teacher Identity. To turn our schools into places where children who are Indigenous, Black, and Latinx can thrive, we need to rehumanize our teaching practices. The chapters in this volume describe a variety of initiatives that work to place these often marginalized students--and their identities, backgrounds, challenges, and aspirations--at the center of mathematics teaching and learning. We meet teachers who listen to and learn from their students as they work together to reverse those dehumanizing practices found in traditional mathematics education. With these examples as inspiration, this volume opens a conversation on what mathematics educators can do to enable Latinx, Black, and Indigenous students to build on their strengths and fulfill their promise.
A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.