Large-Eddy Simulations of Turbulence

Large-Eddy Simulations of Turbulence

Author: M. Lesieur

Publisher: Cambridge University Press

Published: 2005-08-22

Total Pages: 240

ISBN-13: 9780521781244

DOWNLOAD EBOOK

Large-Eddy Simulations of Turbulence is a reference for LES, direct numerical simulation and Reynolds-averaged Navier-Stokes simulation.


Aerodynamics of Wind Turbines

Aerodynamics of Wind Turbines

Author: Sven Schmitz

Publisher: John Wiley & Sons

Published: 2020-01-28

Total Pages: 334

ISBN-13: 1119405610

DOWNLOAD EBOOK

A review of the aerodynamics, design and analysis, and optimization of wind turbines, combined with the author’s unique software Aerodynamics of Wind Turbines is a comprehensive introduction to the aerodynamics, scaled design and analysis, and optimization of horizontal-axis wind turbines. The author –a noted expert on the topic – reviews the fundamentals and basic physics of wind turbines operating in the atmospheric boundary layer. He then explores more complex models that help in the aerodynamic analysis and design of turbine models. The text contains unique chapters on blade element momentum theory, airfoil aerodynamics, rotational augmentation, vortex-wake methods, actuator-line modeling, and designing aerodynamically scaled turbines for model-scale experiments. The author clearly demonstrates how effective analysis and design principles can be used in a wide variety of applications and operating conditions. The book integrates the easy-to-use, hands-on XTurb design and analysis software that is available on a companion website for facilitating individual analyses and future studies. This component enhances the learning experience and helps with a deeper and more complete understanding of the subject matter. This important book: Covers aerodynamics, design and analysis and optimization of wind turbines Offers the author’s XTurb design and analysis software that is available on a companion website for individual analyses and future studies Includes unique chapters on blade element momentum theory, airfoil aerodynamics, rotational augmentation, vortex-wake methods, actuator-line modeling, and designing aerodynamically scaled turbines for model-scale experiments Demonstrates how design principles can be applied to a variety of applications and operating conditions Written for senior undergraduate and graduate students in wind energy as well as practicing engineers and scientists, Aerodynamics of Wind Turbines is an authoritative text that offers a guide to the fundamental principles, design and analysis of wind turbines.


Engineering Fluid Dynamics 2019-2020

Engineering Fluid Dynamics 2019-2020

Author: Bjørn H. Hjertager

Publisher: MDPI

Published: 2021-02-25

Total Pages: 384

ISBN-13: 3036502149

DOWNLOAD EBOOK

This book contains the successful submissions to a Special Issue of Energies entitled “Engineering Fluid Dynamics 2019–2020”. The topic of engineering fluid dynamics includes both experimental and computational studies. Of special interest were submissions from the fields of mechanical, chemical, marine, safety, and energy engineering. We welcomed original research articles and review articles. After one-and-a-half years, 59 papers were submitted and 31 were accepted for publication. The average processing time was about 41 days. The authors had the following geographical distribution: China (15); Korea (7); Japan (3); Norway (2); Sweden (2); Vietnam (2); Australia (1); Denmark (1); Germany (1); Mexico (1); Poland (1); Saudi Arabia (1); USA (1); Serbia (1). Papers covered a wide range of topics including analysis of free-surface waves, bridge girders, gear boxes, hills, radiation heat transfer, spillways, turbulent flames, pipe flow, open channels, jets, combustion chambers, welding, sprinkler, slug flow, turbines, thermoelectric power generation, airfoils, bed formation, fires in tunnels, shell-and-tube heat exchangers, and pumps.


Aerodynamics of Wind Turbines, 2nd edition

Aerodynamics of Wind Turbines, 2nd edition

Author: Martin O. L. Hansen

Publisher: Routledge

Published: 2013-05-13

Total Pages: 192

ISBN-13: 1136572260

DOWNLOAD EBOOK

Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The new material includes a description of the effects of the dynamics and how this can be modelled in an ?aeroelastic code?, which is widely used in the design and verification of modern wind turbines. Further, the description of how to calculate the vibration of the whole construction, as well as the time varying loads, has been substantially updated.


Large Eddy Simulation for Incompressible Flows

Large Eddy Simulation for Incompressible Flows

Author: P. Sagaut

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 437

ISBN-13: 3662046954

DOWNLOAD EBOOK

First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."


Turbulence in the Atmosphere

Turbulence in the Atmosphere

Author: John C. Wyngaard

Publisher: Cambridge University Press

Published: 2010-01-28

Total Pages: 407

ISBN-13: 1139485520

DOWNLOAD EBOOK

Based on his over forty years of research and teaching, John C. Wyngaard's textbook is an excellent up-to-date introduction to turbulence in the atmosphere and in engineering flows for advanced students, and a reference work for researchers in the atmospheric sciences. Part I introduces the concepts and equations of turbulence. It includes a rigorous introduction to the principal types of numerical modeling of turbulent flows. Part II describes turbulence in the atmospheric boundary layer. Part III covers the foundations of the statistical representation of turbulence and includes illustrative examples of stochastic problems that can be solved analytically. The book treats atmospheric and engineering turbulence in a unified way, gives clear explanation of the fundamental concepts of modeling turbulence, and has an up-to-date treatment of turbulence in the atmospheric boundary layer. Student exercises are included at the ends of chapters, and worked solutions are available online for use by course instructors.


Large-Eddy Simulation in Hydraulics

Large-Eddy Simulation in Hydraulics

Author: Wolfgang Rodi

Publisher: CRC Press

Published: 2013-06-27

Total Pages: 266

ISBN-13: 0203797574

DOWNLOAD EBOOK

An introduction to the Large-Eddy-Simulation (LES) method, geared primarily toward hydraulic and environmental engineers, the book covers special features of flows in water bodies and summarizes the experience gained with LES for calculating such flows. It can also be a valuable entry to the subject of LES for researchers and students in all fields of fluids engineering, and the applications part will be useful to researchers interested in the physics of flows governed by the dynamics of coherent structures.


Understanding Wind Power Technology

Understanding Wind Power Technology

Author: Alois Schaffarczyk

Publisher: John Wiley & Sons

Published: 2014-04-10

Total Pages: 688

ISBN-13: 1118701550

DOWNLOAD EBOOK

Wind energy technology has progressed enormously over the last decade. In coming years it will continue to develop in terms of power ratings, performance and installed capacity of large wind turbines worldwide, with exciting developments in offshore installations. Designed to meet the training needs of wind engineers, this introductory text puts wind energy in context, from the natural resource to the assessment of cost effectiveness and bridges the gap between theory and practice. The thorough coverage spans the scientific basics, practical implementations and the modern state of technology used in onshore and offshore wind farms for electricity generation. Key features: provides in-depth treatment of all systems associated with wind energy, including the aerodynamic and structural aspects of blade design, the flow of energy and loads through the wind turbine, the electrical components and power electronics including control systems explains the importance of wind resource assessment techniques, site evaluation and ecology with a focus of project planning and operation describes the integration of wind farms into the electric grid and includes a whole chapter dedicated to offshore wind farms includes questions in each chapter for readers to test their knowledge Written by experts with deep experience in research, teaching and industry, this text conveys the importance of wind energy in the international energy-policy debate, and offers clear insight into the subject for postgraduates and final year undergraduate students studying all aspects of wind engineering. Understanding Wind Power Systems is also an authoritative resource for engineers designing and developing wind energy systems, energy policy makers, environmentalists, and economists in the renewable energy sector.