Wind energy. Methods for computation of wave forcing and the resulting motion of a slender offshore floating structure

Wind energy. Methods for computation of wave forcing and the resulting motion of a slender offshore floating structure

Author: Olga Glöckner

Publisher: GRIN Verlag

Published: 2018-07-19

Total Pages: 151

ISBN-13: 3668754780

DOWNLOAD EBOOK

Academic Paper from the year 2014 in the subject Engineering - Civil Engineering, grade: 1,0, University of Hannover (A&M University Texas, Ludwig-Franzius-Institut für Wasserbau, Ästuar- und Küsteningenieurwesen), language: English, abstract: This thesis investigates how wave loads act on an OC3 Hywind spar-buoy. The author analyzes the resulting motions of the support platform. This work also contains a detailed presentation of the topic with useful additional information and graphics. Unlike fossil fuels (like oil, coal and natural gas), wind energy is a renewable energy resource. Since winds at sea are stronger and more consistent than onshore winds, the demand for offshore wind turbines has increased over the last years. As energy can be produced more efficient in deeper water, several floating offshore wind turbine constructions, such as the OC3 Hywind spar-buoy, have been proposed. The design of floating wind turbines depends on the simulation of the system behavior caused by exciting forces. A general overview of regular and irregular waves as well as hydrostatic and hydrodynamic loads acting on floating structures is given in chapter 2. Furthermore, essential formulations for calculating motions of FOWTs are given at the end of this chapter. Since all simulations carried out in this thesis are based on the OC3 Hywind concept, detailed information about this floating wind turbine model are given in chapter 3. Three different methods are used for the estimation of wave induced loads and motions. Section 4 describes a modified Morison formulation in the time domain which is applied by the commercially available software MATLAB. On the basis of the diffraction theory the commercial offshore software package SESAM simulates wave excitation forces and responding motions which are presented and discussed in chapter 5. The third method is the open source code FAST that computes wave induced loads and motions based on the first-order potential theory and Kane’s equation of motion. Basic formulations used in FAST and essential hydrodynamic results are shown in chapter 6. The comparisons between the simulations of the three programs are represented and the individual results are analyzed in chapter 7.


Comparison of methods for the computation of wave forcing

Comparison of methods for the computation of wave forcing

Author: Olga Glöckner

Publisher: GRIN Verlag

Published: 2018-05-18

Total Pages: 20

ISBN-13: 366870614X

DOWNLOAD EBOOK

Presentation slides from the year 2014 in the subject Engineering - Civil Engineering, grade: 1,0, University of Hannover, language: English, abstract: Unlike fossil fuels (e.g. oil, coal and natural gas), wind energy is a renewable energy resource. Since winds at sea are stronger and more consistent than onshore winds, the demand for offshore wind turbines has increased over the last years. As energy can be produced more efficient in deeper water, several floating offshore wind turbine constructions, such as the OC3 Hywind spar-buoy, have been proposed. The design of floating wind turbines depends on the simulation of the system behavior caused by exciting forces. This thesis deals with the comparison between different methods for calculating wave forces and resulting platform motions of a floating offshore wind turbine. On the one hand, wave exciting loads computed with Morison’s equation are compared to the hydrodynamic forces simulated by the open source code FAST on the basis of the diffraction theory. On the other hand, response motions of the floating structure are simulated by the commercial offshore software SESAM in the frequency domain and compared with the motions calculated by FAST in the time domain.


A comparison of methods for computation of wave forcing

A comparison of methods for computation of wave forcing

Author: Olga Glöckner

Publisher: GRIN Verlag

Published: 2018-05-17

Total Pages: 137

ISBN-13: 3668705224

DOWNLOAD EBOOK

Diploma Thesis from the year 2014 in the subject Engineering - Civil Engineering, grade: 1,0, University of Hannover (A&M University Texas, Ludwig-Franzius-Institut für Wasserbau, Ästuar- und Küsteningenieurwesen), language: English, abstract: Unlike fossil fuels (for example oil, coal and natural gas), wind energy is a renewable energy resource. Since winds at sea are stronger and more consistent than onshore winds, the demand for offshore wind turbines has increased over the last years. As energy can be produced more efficient in deeper water, several floating offshore wind turbine constructions, such as the OC3 Hywind spar-buoy, have been proposed. The design of floating wind turbines depends on the simulation of the system behavior caused by exciting forces. This thesis deals with the comparison between different methods for calculating wave forces and resulting platform motions of a floating offshore wind turbine. On the one hand, wave exciting loads computed with Morison’s equation are compared to the hydrodynamic forces simulated by the open source code FAST on the basis of the diffraction theory. On the other hand, response motions of the floating structure are simulated by the commercial offshore software SESAM in the frequency domain and compared with the motions calculated by FAST in the time domain.


Floating Offshore Wind Energy

Floating Offshore Wind Energy

Author: Joao Cruz

Publisher: Springer

Published: 2016-08-20

Total Pages: 345

ISBN-13: 3319293982

DOWNLOAD EBOOK

This book provides a state-of-the-art review of floating offshore wind turbines (FOWT). It offers developers a global perspective on floating offshore wind energy conversion technology, documenting the key challenges and practical solutions that this new industry has found to date. Drawing on a wide network of experts, it reviews the conception, early design stages, load & structural analysis and the construction of FOWT. It also presents and discusses data from pioneering projects. Written by experienced professionals from a mix of academia and industry, the content is both practical and visionary. As one of the first titles dedicated to FOWT, it is a must-have for anyone interested in offshore renewable energy conversion technologies.


Offshore Mechanics

Offshore Mechanics

Author: Madjid Karimirad

Publisher: John Wiley & Sons

Published: 2018-05-07

Total Pages: 305

ISBN-13: 1119216621

DOWNLOAD EBOOK

Covers theoretical concepts in offshore mechanics with consideration to new applications, including offshore wind farms, ocean energy devices, aquaculture, floating bridges, and submerged tunnels This comprehensive book covers important aspects of the required analysis and design of offshore structures and systems and the fundamental background material for offshore engineering. Whereas most of the books currently available in the field use traditional oil, gas, and ship industry examples in order to explain the fundamentals in offshore mechanics, this book uses more recent applications, including recent fixed-bottom and floating offshore platforms, ocean energy structures and systems such as wind turbines, wave energy converters, tidal turbines and hybrid marine platforms. Offshore Mechanics covers traditional and more recent methodologies used in offshore structure modelling (including SPH and hydroelasticity models). It also examines numerical techniques, including computational fluid dynamics and finite element method. Additionally, the book features easy-to-understand exercises and examples. Provides a comprehensive treatment for the case of recent applications in offshore mechanics for researchers and engineers Presents the subject of computational fluid dynamics (CFD) and finite element methods (FEM) along with the high fidelity numerical analysis of recent applications in offshore mechanics Offers insight into the philosophy and power of numerical simulations and an understanding of the mathematical nature of the fluid and structural dynamics with focus on offshore mechanic applications Offshore Mechanics: Structural and Fluid Dynamics for Recent Applications is an important book for graduate and senior undergraduate students in offshore engineering and for offshore engineers and researchers in the offshore industry.


Sea Loads on Ships and Offshore Structures

Sea Loads on Ships and Offshore Structures

Author: O. Faltinsen

Publisher: Cambridge University Press

Published: 1993-09-23

Total Pages: 344

ISBN-13: 9780521458702

DOWNLOAD EBOOK

After introducing the theory of the structural loading on ships and offshore structures based on the motions of wind, waves and currents, this text demonstrates its applications to conventional and non-conventional sea vessels, including extensive exercises and examples.


MARE-WINT

MARE-WINT

Author: Wiesław Ostachowicz

Publisher: Springer

Published: 2016-08-30

Total Pages: 432

ISBN-13: 3319390953

DOWNLOAD EBOOK

This book provides a holistic, interdisciplinary overview of offshore wind energy, and is a must-read for advanced researchers. Topics, from the design and analysis of future turbines, to the decommissioning of wind farms, are covered. The scope of the work ranges from analytical, numerical and experimental advancements in structural and fluid mechanics, to novel developments in risk, safety & reliability engineering for offshore wind.The core objective of the current work is to make offshore wind energy more competitive, by improving the reliability, and operations and maintenance (O&M) strategies of wind turbines. The research was carried out under the auspices of the EU-funded project, MARE-WINT. The project provided a unique opportunity for a group of researchers to work closely together, undergo multidisciplinary doctoral training, and conduct research in the area of offshore wind energy generation. Contributions from expert, external authors are also included, and the complete work seeks to bridge the gap between research and a rapidly-evolving industry.


Twenty-Second Symposium on Naval Hydrodynamics

Twenty-Second Symposium on Naval Hydrodynamics

Author: National Research Council

Publisher: National Academies Press

Published: 2000-03-02

Total Pages: 1039

ISBN-13: 0309065372

DOWNLOAD EBOOK

The Twenty-Second Symposium on Naval Hydrodynamics was held in Washington, D.C., from August 9-14, 1998. It coincided with the 100th anniversary of the David Taylor Model Basin. This international symposium was organized jointly by the Office of Naval Research (Mechanics and Energy Conversion S&T Division), the National Research Council (Naval Studies Board), and the Naval Surface Warfare Center, Carderock Division (David Taylor Model Basin). This biennial symposium promotes the technical exchange of naval research developments of common interest to all the countries of the world. The forum encourages both formal and informal discussion of the presented papers, and the occasion provides an opportunity for direct communication between international peers.