RF and Microwave Transistor Oscillator Design

RF and Microwave Transistor Oscillator Design

Author: Andrei Grebennikov

Publisher: John Wiley & Sons

Published: 2007-04-30

Total Pages: 458

ISBN-13: 9780470512081

DOWNLOAD EBOOK

The increase of consumer electronics and communications applications using Radio Frequency (RF) and microwave circuits has implications for oscillator design. Applications working at higher frequencies and using novel technologies have led to a demand for more robust circuits with higher performance and functionality, but decreased costs, size and power consumption. As a result, there is also a need for more efficient oscillators. This book presents up to date information on all aspects of oscillator design, enabling a selection of the best oscillator topologies with optimized noise reduction and electrical performance. RF and Microwave Transistor Oscillator Design covers: analyses of non-linear circuit design methods including spectral-domain analysis, time-domain analysis and the quasilinear method; information on noise in oscillators including chapters on varactor and oscillator frequency tuning, CMOS voltage-controlled oscillators and wideband voltage-controlled oscillators; information on the stability of oscillations, with discussions on the stability of multi-resonant circuits and the phase plane method; optimized design and circuit techniques, beginning with the empirical and analytic design approaches, moving on to the high-efficiency design technique; general operation and design principles of oscillators, including a section on the historical aspects of oscillator configurations. A valuable reference for practising RF and Microwave designers and engineers, RF and Microwave Transistor Oscillator Design is also useful for lecturers, advanced students and research and design (R&D) personnel.


Mission-Oriented Sensor Networks and Systems: Art and Science

Mission-Oriented Sensor Networks and Systems: Art and Science

Author: Habib M. Ammari

Publisher: Springer Nature

Published: 2019-09-18

Total Pages: 797

ISBN-13: 3319923846

DOWNLOAD EBOOK

This book presents a broad range of deep-learning applications related to vision, natural language processing, gene expression, arbitrary object recognition, driverless cars, semantic image segmentation, deep visual residual abstraction, brain–computer interfaces, big data processing, hierarchical deep learning networks as game-playing artefacts using regret matching, and building GPU-accelerated deep learning frameworks. Deep learning, an advanced level of machine learning technique that combines class of learning algorithms with the use of many layers of nonlinear units, has gained considerable attention in recent times. Unlike other books on the market, this volume addresses the challenges of deep learning implementation, computation time, and the complexity of reasoning and modeling different type of data. As such, it is a valuable and comprehensive resource for engineers, researchers, graduate students and Ph.D. scholars.


Antenna Design for Cognitive Radio

Antenna Design for Cognitive Radio

Author: Youssef Tawk

Publisher: Artech House

Published: 2016-06-30

Total Pages: 289

ISBN-13: 1630813699

DOWNLOAD EBOOK

This one-of-a-kind new resource presents cognitive radio from an antenna design perspective and introduces the concept of cognitive radio as a protocol that benefits from under-utilized regions of the spectrum. This book covers topics that govern the operation of a cognitive radio and discusses the use of reconfigurable antennas, reconfigurable filtennas, and MIMO antennas for cognitive radio. The analysis and design of different antenna systems are presented, compared and evaluated. New approaches to improve spectrum efficiency are explored by demonstrating how to design software controlled cognitive radio antenna systems. This new resource shows how to communicate using either interweave or underlay cognitive radio and demonstrates the benefits of designing appropriate sensing and communicating antennas. The first part of the book introduces the basic concept of cognitive radio and discusses the difference between cognitive radio and software defined radio from the RF system 's perspective. The second part of the book discusses the main antenna design requirements, procedures and challenges for cognitive radio. The third part of the book introduces new trends in cognitive radio implementation such as the implementation of MIMO antennas on cognitive radio, the use of machine learning techniques to optimize the performance of a cognitive radio environment, and the implementation of cognitive radar and cognitive radio in space.