Bayes Rules!

Bayes Rules!

Author: Alicia A. Johnson

Publisher: CRC Press

Published: 2022-03-03

Total Pages: 606

ISBN-13: 1000529568

DOWNLOAD EBOOK

Praise for Bayes Rules!: An Introduction to Applied Bayesian Modeling “A thoughtful and entertaining book, and a great way to get started with Bayesian analysis.” Andrew Gelman, Columbia University “The examples are modern, and even many frequentist intro books ignore important topics (like the great p-value debate) that the authors address. The focus on simulation for understanding is excellent.” Amy Herring, Duke University “I sincerely believe that a generation of students will cite this book as inspiration for their use of – and love for – Bayesian statistics. The narrative holds the reader’s attention and flows naturally – almost conversationally. Put simply, this is perhaps the most engaging introductory statistics textbook I have ever read. [It] is a natural choice for an introductory undergraduate course in applied Bayesian statistics." Yue Jiang, Duke University “This is by far the best book I’ve seen on how to (and how to teach students to) do Bayesian modeling and understand the underlying mathematics and computation. The authors build intuition and scaffold ideas expertly, using interesting real case studies, insightful graphics, and clear explanations. The scope of this book is vast – from basic building blocks to hierarchical modeling, but the authors’ thoughtful organization allows the reader to navigate this journey smoothly. And impressively, by the end of the book, one can run sophisticated Bayesian models and actually understand the whys, whats, and hows.” Paul Roback, St. Olaf College “The authors provide a compelling, integrated, accessible, and non-religious introduction to statistical modeling using a Bayesian approach. They outline a principled approach that features computational implementations and model assessment with ethical implications interwoven throughout. Students and instructors will find the conceptual and computational exercises to be fresh and engaging.” Nicholas Horton, Amherst College An engaging, sophisticated, and fun introduction to the field of Bayesian statistics, Bayes Rules!: An Introduction to Applied Bayesian Modeling brings the power of modern Bayesian thinking, modeling, and computing to a broad audience. In particular, the book is an ideal resource for advanced undergraduate statistics students and practitioners with comparable experience. Bayes Rules! empowers readers to weave Bayesian approaches into their everyday practice. Discussions and applications are data driven. A natural progression from fundamental to multivariable, hierarchical models emphasizes a practical and generalizable model building process. The evaluation of these Bayesian models reflects the fact that a data analysis does not exist in a vacuum. Features • Utilizes data-driven examples and exercises. • Emphasizes the iterative model building and evaluation process. • Surveys an interconnected range of multivariable regression and classification models. • Presents fundamental Markov chain Monte Carlo simulation. • Integrates R code, including RStan modeling tools and the bayesrules package. • Encourages readers to tap into their intuition and learn by doing. • Provides a friendly and inclusive introduction to technical Bayesian concepts. • Supports Bayesian applications with foundational Bayesian theory.


The Theory That Would Not Die

The Theory That Would Not Die

Author: Sharon Bertsch McGrayne

Publisher: Yale University Press

Published: 2011-05-17

Total Pages: 336

ISBN-13: 0300175094

DOWNLOAD EBOOK

"This account of how a once reviled theory, Baye’s rule, came to underpin modern life is both approachable and engrossing" (Sunday Times). A New York Times Book Review Editors’ Choice Bayes' rule appears to be a straightforward, one-line theorem: by updating our initial beliefs with objective new information, we get a new and improved belief. To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok. In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the generations-long human drama surrounding it. McGrayne traces the rule’s discovery by an 18th century amateur mathematician through its development by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—while practitioners relied on it to solve crises involving great uncertainty and scanty information, such as Alan Turing's work breaking Germany's Enigma code during World War II. McGrayne also explains how the advent of computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security. Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.


Bayes' Rule

Bayes' Rule

Author: James V. Stone

Publisher: Sebtel Press

Published: 2013-06-01

Total Pages: 184

ISBN-13: 0956372848

DOWNLOAD EBOOK

In this richly illustrated book, the tutorial style of writing, combined with a comprehensive glossary, makes this an ideal primer for the novice who wishes to become familiar with the basic principles of Bayesian analysis.


Bayesian Statistics the Fun Way

Bayesian Statistics the Fun Way

Author: Will Kurt

Publisher: No Starch Press

Published: 2019-07-09

Total Pages: 258

ISBN-13: 1593279566

DOWNLOAD EBOOK

Fun guide to learning Bayesian statistics and probability through unusual and illustrative examples. Probability and statistics are increasingly important in a huge range of professions. But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that. This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples. By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to: - How to measure your own level of uncertainty in a conclusion or belief - Calculate Bayes theorem and understand what it's useful for - Find the posterior, likelihood, and prior to check the accuracy of your conclusions - Calculate distributions to see the range of your data - Compare hypotheses and draw reliable conclusions from them Next time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.


Think Bayes

Think Bayes

Author: Allen Downey

Publisher: "O'Reilly Media, Inc."

Published: 2013-09-12

Total Pages: 213

ISBN-13: 1491945443

DOWNLOAD EBOOK

If you know how to program with Python, and know a little about probability, you're ready to tackle Bayesian statistics. This book shows you how to use Python code instead of math to help you learn Bayesian fundamentals. Once you get the math out of the way, you'll be able to apply these techniques to real-world problems.


Bayesian Probability for Babies

Bayesian Probability for Babies

Author: Chris Ferrie

Publisher: Sourcebooks, Inc.

Published: 2019-07-02

Total Pages: 26

ISBN-13: 1728213517

DOWNLOAD EBOOK

Fans of Chris Ferrie's Rocket Science for Babies, Astrophysics for Babies, and 8 Little Planets will love this introduction to the basic principles of probability for babies and toddlers! Help your future genius become the smartest baby in the room! It only takes a small spark to ignite a child's mind. If you took a bite out of a cookie and that bite has no candy in it, what is the probability that bite came from a candy cookie or a cookie with no candy? You and baby will find out the probability and discover it through different types of distribution. Yet another Baby University board book full of simple explanations of complex ideas written by an expert for your future genius! If you're looking for baby math books, probability for kids, or more Baby University board books to surprise your little one, look no further! Bayesian Probability for Babies offers fun early learning for your little scientist!


The Equation of Knowledge

The Equation of Knowledge

Author: Lê Nguyên Hoang

Publisher: CRC Press

Published: 2020-06-18

Total Pages: 461

ISBN-13: 1000063232

DOWNLOAD EBOOK

The Equation of Knowledge: From Bayes' Rule to a Unified Philosophy of Science introduces readers to the Bayesian approach to science: teasing out the link between probability and knowledge. The author strives to make this book accessible to a very broad audience, suitable for professionals, students, and academics, as well as the enthusiastic amateur scientist/mathematician. This book also shows how Bayesianism sheds new light on nearly all areas of knowledge, from philosophy to mathematics, science and engineering, but also law, politics and everyday decision-making. Bayesian thinking is an important topic for research, which has seen dramatic progress in the recent years, and has a significant role to play in the understanding and development of AI and Machine Learning, among many other things. This book seeks to act as a tool for proselytising the benefits and limits of Bayesianism to a wider public. Features Presents the Bayesian approach as a unifying scientific method for a wide range of topics Suitable for a broad audience, including professionals, students, and academics Provides a more accessible, philosophical introduction to the subject that is offered elsewhere


Let the Evidence Speak

Let the Evidence Speak

Author: Alan Jessop

Publisher: Springer

Published: 2018-05-31

Total Pages: 220

ISBN-13: 3319713922

DOWNLOAD EBOOK

This book presents the most important ideas behind Bayes’ Rule in a form suitable for the general reader. It is written without formulae because they are not necessary; the ability to add and multiply is all that is needed. As well as showing in full the application of Bayes’ Rule to some quantitatively simple, though not trivial, examples, the book also convincingly demonstrates that some familiarity with Bayes’ Rule is helpful in thinking about how best to structure one’s thinking.


Open Problems in Communication and Computation

Open Problems in Communication and Computation

Author: Thomas M. Cover

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 241

ISBN-13: 1461248086

DOWNLOAD EBOOK

Thomas M. Cover and B. Gopinatb The papers in this volume are the contributions to a special workshop on problems in communication and computation conducted in the summers of 1984 and 1985 in Morristown, New Jersey, and the summer of 1986 in Palo Alto. California. The structure of this workshop was unique: no recent results. no surveys. Instead. we asked for outstanding open prob~ lems in the field. There are many famous open problems, including the question P = NP?, the simplex conjecture in communication theory, the capacity region of the broadcast channel. and the two·helper problem in information theory. Beyond these well-defined problems are certain grand research goals. What is the general theory of information flow in stochastic networks? What is a comprehensive theory of computational complexity? What about a unification of algorithmic complexity and computational complex ity? Is there a notion of energy-free computation? And if so, where do information theory, communication theory, computer science, and physics meet at the atomic level? Is there a duality between computation and communication? Finally. what is the ultimate impact of algorithmic com plexity on probability theory? And what is its relationship to information theory? The idea was to present problems on the first day. try to solve them on the second day, and present the solutions on the third day. In actual fact, only one problem was solved during the meeting -- El Gamal's prob· lem on noisy communication over a common line.


Bayes' Theorem Examples

Bayes' Theorem Examples

Author: Dan Morris

Publisher: Independently Published

Published: 2016-10-02

Total Pages: 112

ISBN-13: 9781549761744

DOWNLOAD EBOOK

***** #1 Kindle Store Bestseller in Mathematics (Throughout 2016) ********** #1 Kindle Store Bestseller in Education Theory (Throughout 2017) *****If you are looking for a short beginners guide packed with visual examples, this book is for you. Bayes' Theorem Examples: A Beginners Visual Approach to Bayesian Data Analysis If you've recently used Google search to find something, Bayes' Theorem was used to find your search results. The same is true for those recommendations on Netflix. Hedge funds? Self-driving cars? Search and Rescue? Bayes' Theorem is used in all of the above and more. At its core, Bayes' Theorem is a simple probability and statistics formula that has revolutionized how we understand and deal with uncertainty. If life is seen as black and white, Bayes' Theorem helps us think about the gray areas. When new evidence comes our way, it helps us update our beliefs and create a new belief.Ready to dig in and visually explore Bayes' Theorem? Let's go! Over 60 hand-drawn visuals are included throughout the book to help you work through each problem as you learn by example. The beautifully hand-drawn visual illustrations are specifically designed and formatted for the kindle.This book also includes sections not found in other books on Bayes' Rule. These include: A short tutorial on how to understand problem scenarios and find P(B), P(A), and P(B|A). - For many people, knowing how to approach scenarios and break them apart can be daunting. In this booklet, we provide a quick step-by-step reference on how to confidently understand scenarios. A few examples of how to think like a Bayesian in everyday life. Bayes' Rule might seem somewhat abstract, but it can be applied to many areas of life and help you make better decisions. Learn how Bayes can help you with critical thinking, problem-solving, and dealing with the gray areas of life. A concise history of Bayes' Rule. - Bayes' Theorem has a fascinating 200+ year history, and we have summed it up for you in this booklet. From its discovery in the 1700's to its being used to break the German's Enigma Code during World War 2. Fascinating real-life stories on how Bayes' formula is used everyday.From search and rescue to spam filtering and driverless cars, Bayes is used in many areas of modern day life. An expanded Bayes' Theorem definition, including notations, and proof section. - In this section we define core elementary bayesian statistics terms more concretely. A recommended readings sectionFrom The Theory That Would Not Die to Think Bayes: Bayesian Statistics in Pythoni> and many more, there are a number of fantastic resources we have collected for further reading. If you are a visual learner and like to learn by example, this intuitive Bayes' Theorem 'for dummies' type book is a good fit for you. Praise for Bayes' Theorem Examples "...What Morris has presented is a useful way to provide the reader with a basic understanding of how to apply the theorem. He takes it easy step by easy step and explains matters in a way that almost anyone can understand. Moreover, by using Venn Diagrams and other visuals, he gives the reader multiple ways of understanding exactly what is going on in Bayes' theorem. The way in which he presents this material helps solidify in the reader's mind how to use Bayes' theorem..." - Doug E. - TOP 100 REVIEWER"...For those who are predominately "Visual Learners", as I certainly am, I highly recommend this book...I believe I gained more from this book than I did from college statistics. Or at least, one fantastic refresher after 20 some years after the fact." - Tin F. TOP 50 REVIEWER