Integral, Measure and Derivative

Integral, Measure and Derivative

Author: G. E. Shilov

Publisher: Courier Corporation

Published: 2013-05-13

Total Pages: 258

ISBN-13: 0486165612

DOWNLOAD EBOOK

This treatment examines the general theory of the integral, Lebesque integral in n-space, the Riemann-Stieltjes integral, and more. "The exposition is fresh and sophisticated, and will engage the interest of accomplished mathematicians." — Sci-Tech Book News. 1966 edition.


LINEAR ALGEBRA

LINEAR ALGEBRA

Author: S. KUMARESAN

Publisher: PHI Learning Pvt. Ltd.

Published: 2000-01-01

Total Pages: 240

ISBN-13: 8120316282

DOWNLOAD EBOOK

This clear, concise and highly readable text is designed for a first course in linear algebra and is intended for undergraduate courses in mathematics. It focusses throughout on geometric explanations to make the student perceive that linear algebra is nothing but analytic geometry of n dimensions. From the very start, linear algebra is presented as an extension of the theory of simultaneous linear equations and their geometric interpretation is shown to be a recurring theme of the subject. The integration of abstract algebraic concepts with the underlying geometric notions is one of the most distinguishing features of this book — designed to help students in the pursuit of multivariable calculus and differential geometry in subsequent courses.Explanations and concepts are logically presented in a conversational tone and well-constructed writing style so that students at a variety of levels can understand the material and acquire a solid foundation in the basic skills of linear algebra.


Functional Analysis

Functional Analysis

Author: R.E. Edwards

Publisher: Courier Corporation

Published: 2012-10-25

Total Pages: 802

ISBN-13: 0486145107

DOWNLOAD EBOOK

"The book contains an enormous amount of information — mathematical, bibliographical and historical — interwoven with some outstanding heuristic discussions." — Mathematical Reviews. In this massive graduate-level study, Emeritus Professor Edwards (Australian National University, Canberra) presents a balanced account of both the abstract theory and the applications of linear functional analysis. Written for readers with a basic knowledge of set theory, general topology, and vector spaces, the book includes an abundance of carefully chosen illustrative examples and excellent exercises at the end of each chapter. Beginning with a chapter of preliminaries on set theory and topology, Dr. Edwards then presents detailed, in-depth discussions of vector spaces and topological vector spaces, the Hahn-Banach theorem (including applications to potential theory, approximation theory, game theory, and other fields) and fixed-point theorems. Subsequent chapters focus on topological duals of certain spaces: radon measures, distribution and linear partial differential equations, open mapping and closed graph theorems, boundedness principles, duality theory, the theory of compact operators and the Krein-Milman theorem and its applications to commutative harmonic analysis. Clearly and concisely written, Dr. Edwards's book offers rewarding reading to mathematicians and physicists with an interest in the important field of functional analysis. Because of the broad scope of its coverage, this volume will be especially valuable to the reader with a basic knowledge of functional analysis who wishes to learn about parts of the subject other than his own specialties. A comprehensive 32-page bibliography supplies a rich source of references to the basic literature.


Resolution of Curve and Surface Singularities in Characteristic Zero

Resolution of Curve and Surface Singularities in Characteristic Zero

Author: K. Kiyek

Publisher: Springer Science & Business Media

Published: 2012-09-11

Total Pages: 506

ISBN-13: 1402020295

DOWNLOAD EBOOK

The Curves The Point of View of Max Noether Probably the oldest references to the problem of resolution of singularities are found in Max Noether's works on plane curves [cf. [148], [149]]. And probably the origin of the problem was to have a formula to compute the genus of a plane curve. The genus is the most useful birational invariant of a curve in classical projective geometry. It was long known that, for a plane curve of degree n having l m ordinary singular points with respective multiplicities ri, i E {1, . . . , m}, the genus p of the curve is given by the formula = (n - l)(n - 2) _ ~ "r. (r. _ 1) P 2 2 L. . ,. •• . Of course, the problem now arises: how to compute the genus of a plane curve having some non-ordinary singularities. This leads to the natural question: can we birationally transform any (singular) plane curve into another one having only ordinary singularities? The answer is positive. Let us give a flavor (without proofs) 2 on how Noether did it • To solve the problem, it is enough to consider a special kind of Cremona trans formations, namely quadratic transformations of the projective plane. Let ~ be a linear system of conics with three non-collinear base points r = {Ao, AI, A }, 2 and take a projective frame of the type {Ao, AI, A ; U}.


!Scat

!Scat

Author: Wil Perkins

Publisher:

Published: 1997

Total Pages: 114

ISBN-13:

DOWNLOAD EBOOK

In this debut collection, Wil Perkins has created a new poetics, star-spangled by the improvisational essence of jazz, the heartfelt essence of the blues and gospels, as well as mystical riffs for the moonish sundance of life. These poems, crafted in the experimental tradition of John Coltrane and e.e. cummings, are a sculptural feast for the eyes, irreverent music for the soul, and serious songs to hail the coming millennium.