Oceanographical Engineering

Oceanographical Engineering

Author: Robert L. Wiegel

Publisher: Courier Corporation

Published: 2013-09-03

Total Pages: 546

ISBN-13: 048616019X

DOWNLOAD EBOOK

As is the case with many modern fields of study, oceanographical engineering cuts across the boundaries of several disciplines. Like other scientific endeavors, it aims to understand the nature of the ocean and to make use of this understanding for the benefit of humanity through better ports, safer and more economical operations at sea, and greater use of the oceans' natural resources--food, raw materials, and recreation. This graduate-level text requires a knowledge of fluid mechanics; a background in the motions of sediments in fluids is advisable, as is a concurrent course in structural dynamics. Topics include the theory of periodic waves; tsunamis, storm surges, and harbor oscillations; the effect of structures on waves; waves in shoaling water; tides and sea level changes; currents; shores and shore processes; some characteristics of the oceans' waters; moorings; and other related subjects. Certain portions of the book pertaining to the distribution of temperatures and salinities in the ocean are largely descriptive; other portions, such as the sections on waves, are mathematical. Numerous drawings and photographs supplement the text.


Report

Report

Author: United States. National Bureau of Standards

Publisher:

Published: 1968

Total Pages: 696

ISBN-13:

DOWNLOAD EBOOK


Harbors

Harbors

Author: United States. Naval Facilities Engineering Command

Publisher:

Published: 1981

Total Pages: 134

ISBN-13:

DOWNLOAD EBOOK


Physical Models and Laboratory Techniques in Coastal Engineering

Physical Models and Laboratory Techniques in Coastal Engineering

Author: Steven A. Hughes

Publisher: World Scientific

Published: 1993

Total Pages: 592

ISBN-13: 9789810215415

DOWNLOAD EBOOK

Laboratory physical models are a valuable tool for coastal engineers. Physical models help us to understand the complex hydrodynamic processes occurring in the nearshore zone and they provide reliable and economic engineering design solutions.This book is about the art and science of physical modeling as applied in coastal engineering. The aim of the book is to consolidate and synthesize into a single text much of the knowledge about physical modeling that has been developed worldwide.This book was written to serve as a graduate-level text for a course in physical modeling or as a reference text for engineers and researchers engaged in physical modeling and laboratory experimentation. The first three chapters serve as an introduction to similitude and physical models, covering topics such as advantages and disadvantages of physical models, systems of units, dimensional analysis, types of similitude and various hydraulic similitude criteria applicable to coastal engineering models.Practical application of similitude principles to coastal engineering studies is covered in Chapter 4 (Hydrodynamic Models), Chapter 5 (Coastal Structure Models) and Chapter 6 (Sediment Transport Models). These chapters develop the appropriate similitude criteria, discuss inherent laboratory and scale effects and overview the technical literature pertaining to these types of models. The final two chapters focus on the related subjects of laboratory wave generation (Chapter 7) and measurement and analysis techniques (Chapter 8).