Wave Processes in Solids with Microstructure
Author: Vladimir I. Erofeyev
Publisher: World Scientific
Published: 2003
Total Pages: 282
ISBN-13: 9789812794505
DOWNLOAD EBOOK1. The fundamental hypothesis of microstructured elastic solids. Structural-phenomenological model. 1.1. Mathematical models of solids with microstructure. 1.2. Definition of material constants -- 2. Gradient elasticity media. Dispersion. Dissipation. Non-linearity. 2.1. Dynamic equations. Energy and momentum variation law. 2.2. Dispersion properties of longitudinal and shear waves. Surface Rayleigh waves. 2.3. Dissipative properties. 2.4. Nonlinear plain stationary waves. 2.5. Quasi-plain wave beams. 2.6. Self-modulation of quasi-harmonic shear waves. 2.7. Resonant interaction of quasi-harmonic waves. 2.8. Noise waves -- 3. Gradient elasticity media. Damaged medium. Magnetoelasticity. 3.1. Waves in damaged medium with microstructure. 3.2. Magneto-elastic waves in the medium with microstructure -- 4. Cosserat continuum. 4.1. Basic equations of micropolar elasticity theory. 4.2. Dispersion properties of volume waves. 4.3. Wave reflection from the free interface of micropolar halfspace. Rayleigh surface waves. 4.4. Normal waves in a micropolar layer. 4.5. Nonlinear resonant interaction of longitudinal and rotation waves. 4.6. Waves in Cosserat pseudocontinuum. 4.7. Waves in the Cosserat continuum with symmetric stress tensor -- 5. Waves in two-component mixture of solids. 5.1. Dispersion properties. 5.2. Some nonlinear wave effects -- 6. Waves in micromorphic solids. 6.1. Dynamics equations. 6.2. Different types of volume waves and their dispersion properties. 6.3. Surface shear waves in the gradient-elastic half-space with surface energy -- 7. Elasto-plastic waves in the medium with dislocations. 7.1. Equations of dynamics. 7.2. Dispersion properties. 7.3. Some nonlinear problems. 7.4. Correlation of elasto-plastic continuum and Cosserat continuum. 7.5. Example of research of the influence of dislocations on dispersion and damping of ultrasound in solid body -- 8. Wave problems of micropolar hydrodynamics. 8.1. Rotational waves in micropolar liquids. 8.2. Shear surface wave at the interface of elastic body and micropolar liquid. 8.3. Shear surface wave at the interface between elastic half-space and conducting viscous liquid in a magnetic field.