The limitation of 235U enrichment is a current concern among IAEA Member States. In response, work has been undertaken to provide a platform to facilitate a comprehensive review of the current status, prospects and challenges associated with the use of fuels having enrichments higher than 5 % 235U in light water reactors. This publication is the outcome of two technical meetings and compiles the results and conclusions in terms of benefits to be obtained from the use of high assay low enriched uranium (HALEU) fuel, with due consideration of safety issues that arise from its use. It details technological options and corresponding issues regarding fuel and core design, safety analysis and assessments relevant to manufacturing, handling, transportation, storage, irradiation, and performance in normal and accident conditions.
The Water Reactor Fuel Performance Meeting (WRFPM) held in Asia has merged with TopFuel in Europe and LWR Fuel Performance in the United States to form the globally most influential conference in the field of nuclear fuel research. WRFPM2023 is organized by Chinese Nuclear Society (CNS) in cooperation with the Atomic Energy Society of Japan (AESJ), Korean Nuclear Society (KNS), European Nuclear Society (ENS), American Nuclear Society (ANS), the Interna-tional Atomic Energy Agency (IAEA) with the support from China Nuclear Energy In¬dustry Corporation (CNEIC) and TVEL. Conference Topics: 1. Advances in water reactor fuel technology and testing 2. Operation and experience 3. Transient and off-normal fuel behaviour and safety related issues 4. Fuel cycle, used fuel storage and transportation 5. Innovative fuel and related issues 6. Fuel modelling, analysis and methodology
Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overview of nuclear reactors and fuel elements, as well as fuel element design and development based on the reactor operator's approach, materials scientist's approach, and interdisciplinary approach. The reader is then introduced to different types of nuclear fuels and their irradiation behavior, considerations for using cladding and duct materials in fuel element design and development, and fuel element design and modeling. The chapters that follow focus on the testing of fuel element performance, experimental techniques and equipment for testing fuel element designs, and the performance of fuels for water reactors. Fuel elements for gas-cooled reactors, fast reactors, and research and test reactors are also described. The book concludes with an assessment of unconventional fuel elements. This book will be useful to fuel element technologists as well as materials scientists and engineers.
Presents brief descriptions of 20 fuel-related safety criteria along with both the rationale for having such criteria and possible new design and operational issues which could have an effect on them.
Accident Tolerant Materials for Light Water Reactor Fuels provides a description of what an accident tolerant fuel is and the benefits and detriments of each concept. The book begins with an introduction to nuclear power as a renewable energy source and the current materials being utilized in light water reactors. It then moves on to discuss the recent advancements being made in accident tolerant fuels, reviewing the specific materials, their fabrication and implementation, environmental resistance, irradiation behavior, and licensing requirements. The book concludes with a look to the future of new power generation technologies. It is written for scientists and engineers working in the nuclear power industry and is the first comprehensive work on this topic. - Introduces the fundamental description of accident tolerant fuel, including fabrication and implementation - Describes both the benefits and detriments of the various Accident Tolerant Fuel concepts - Includes information on the process of materials selection with a discussion of how and why specific materials were chosen, as well as why others failed
Storage and Hybridization of Nuclear Energy: Techno-economic Integration of Renewable and Nuclear Energy provides a unique analysis of the storage and hybridization of nuclear and renewable energy. Editor Bindra and his team of expert contributors present various global methodologies to obtain the techno-economic feasibility of the integration of storage or hybrid cycles in nuclear power plants. Aimed at those studying, researching and working in the nuclear engineering field, this book offers nuclear reactor technology vendors, nuclear utilities workers and regulatory commissioners a very unique resource on how to access reliable, flexible and clean energy from variable-generation. - Presents a unique view on the technologies and systems available to integrate renewables and nuclear energy - Provides insights into the different methodologies and technologies currently available for the storage of energy - Includes case studies from well-known experts working on specific integration concepts around the world
The nuclear fuel cycle is characterised by the wide range of scientific disciplines and technologies it employs. The development of ever more integrated processes across the many stages of the nuclear fuel cycle therefore confronts plant manufacturers and operators with formidable challenges. Nuclear fuel cycle science and engineering describes both the key features of the complete nuclear fuel cycle and the wealth of recent research in this important field.Part one provides an introduction to the nuclear fuel cycle. Radiological protection, security and public acceptance of nuclear technology are considered, along with the economics of nuclear power. Part two goes on to explore materials mining, enrichment, fuel element design and fabrication for the uranium and thorium nuclear fuel cycle. The impact of nuclear reactor design and operation on fuel element irradiation is the focus of part three, including water and gas-cooled reactors, along with CANDU and Generation IV designs. Finally, part four reviews spent nuclear fuel and radioactive waste management.With its distinguished editor and international team of expert contributors, Nuclear fuel cycle science and engineering provides an important review for all those involved in the design, fabrication, use and disposal of nuclear fuels as well as regulatory bodies and researchers in this field. - Provides a comprehensive and holistic review of the complete nuclear fuel cycle - Reviews the issues presented by the nuclear fuel cycle, including radiological protection and security, public acceptance and economic analysis - Discusses issues at the front-end of the fuel cycle, including uranium and thorium mining, enrichment and fuel design and fabrication
Research reactor fuel technology continues to evolve, driven in part by international efforts to develop high density fuels to enable the conversion of more reactors from highly enriched uranium (HEU) to low enriched uranium (LEU) fuels. These high density fuels may offer economic benefits for research reactors, despite being more expensive initially, because they offer the prospect of higher per-assembly burnup, thus reducing the number of assemblies that must be procured, and more flexibility in terms of spent fuel management compared to the currently qualified and commercially available LEU silicide fuels. Additionally, these new fuels may offer better performance characteristics. This publication provides a preliminary evaluation of the impacts on research reactor performance and fuel costs from using high density fuel. Several case studies are presented and compared to illustrate these impacts.