Biofuels made from algae are gaining attention as a domestic source of renewable fuel. However, with current technologies, scaling up production of algal biofuels to meet even 5 percent of U.S. transportation fuel needs could create unsustainable demands for energy, water, and nutrient resources. Continued research and development could yield innovations to address these challenges, but determining if algal biofuel is a viable fuel alternative will involve comparing the environmental, economic and social impacts of algal biofuel production and use to those associated with petroleum-based fuels and other fuel sources. Sustainable Development of Algal Biofuels was produced at the request of the U.S. Department of Energy.
National interests in greater energy independence, concurrent with favorable market forces, have driven increased production of corn-based ethanol in the United States and research into the next generation of biofuels. The trend is changing the national agricultural landscape and has raised concerns about potential impacts on the nation's water resources. To help illuminate these issues, the National Research Council held a colloquium on July 12, 2007 in Washington, DC. Water Implications of Biofuels Production in the United States, based in part on discussions at the colloquium, concludes that if projected future increases in use of corn for ethanol production do occur, the increase in harm to water quality could be considerable from the increases in fertilizer use, pesticide use, and soil erosion associated with growing crops such as corn. Water supply problems could also develop, both from the water needed to grow biofuels crops and water used at ethanol processing plants, especially in regions where water supplies are already overdrawn. The production of "cellulosic ethanol," derived from fibrous material such as wheat straw, native grasses, and forest trimmings is expected to have less water quality impact but cannot yet be produced on a commerical scale. To move toward a goal of reducing water impacts of biofuels, a policy bridge will likely be needed to encourage growth of new technologies, best agricultural practies, and the development of traditional and cellulosic crops that require less water and fertilizer and are optimized for fuel production.
In the United States, we have come to depend on plentiful and inexpensive energy to support our economy and lifestyles. In recent years, many questions have been raised regarding the sustainability of our current pattern of high consumption of nonrenewable energy and its environmental consequences. Further, because the United States imports about 55 percent of the nation's consumption of crude oil, there are additional concerns about the security of supply. Hence, efforts are being made to find alternatives to our current pathway, including greater energy efficiency and use of energy sources that could lower greenhouse gas (GHG) emissions such as nuclear and renewable sources, including solar, wind, geothermal, and biofuels. The United States has a long history with biofuels and the nation is on a course charted to achieve a substantial increase in biofuels. Renewable Fuel Standard evaluates the economic and environmental consequences of increasing biofuels production as a result of Renewable Fuels Standard, as amended by EISA (RFS2). The report describes biofuels produced in 2010 and those projected to be produced and consumed by 2022, reviews model projections and other estimates of the relative impact on the prices of land, and discusses the potential environmental harm and benefits of biofuels production and the barriers to achieving the RFS2 consumption mandate. Policy makers, investors, leaders in the transportation sector, and others with concerns for the environment, economy, and energy security can rely on the recommendations provided in this report.
National interests in greater energy independence, concurrent with favorable market forces, have driven increased production of corn-based ethanol in the United States and research into the next generation of biofuels. The trend is changing the national agricultural landscape and has raised concerns about potential impacts on the nation's water resources. To help illuminate these issues, the National Research Council held a colloquium on July 12, 2007 in Washington, DC. "Water Implications of Biofuels Production in the United States," based in part on discussions at the colloquium, concludes that if projected future increases in use of corn for ethanol production do occur, the increase in harm to water quality could be considerable from the increases in fertilizer use, pesticide use, and soil erosion associated with growing crops such as corn. Water supply problems could also develop, both from the water needed to grow biofuels crops and water used at ethanol processing plants, especially in regions where water supplies are already overdrawn. The production of "cellulosic ethanol," derived from fibrous material such as wheat straw, native grasses, and forest trimmings is expected to have less water quality impact but cannot yet be produced on a commerical scale. To move toward a goal of reducing water impacts of biofuels, a policy bridge will likely be needed to encourage growth of new technologies, best agricultural practies, and the development of traditional and cellulosic crops that require less water and fertilizer and are optimized for fuel production.
A new economic opportunity for sub-Saharan Africa is looming large: biofuel production. Rapidly rising energy prices are expected to remain high for an extended period of time because of the increasing demand in prospering and populous countries such as China and India, the depletion of easily accessible supplies of crude oil, and concern over global climate change. As a result, there is renewed interest in biofuels as an alternative to fossil fuels. Africa is uniquely positioned to produce these new cash crops for both domestic use and export. The region has abundant land resources and preferential access to protected markets with higher-than-world-market prices. The rapid growth in the demand for transport fuels in Africa and high fuel prices create domestic markets for biofuels. The European Union and the United States have approved legislation that requires large increases in the consumption of biofuels over at least the next decade. Imports are expected to be needed to meet these mandates, thus opening the door to African and other developing countries that can produce biofuels or feedstocks for biofuels competitively. Expanding the production of crops for biofuels will affect the entire rural sector in Africa as resources are shifted away from traditional crops and the prices of all agricultural commodities rise. Even smallholders can participate in producing biofuel crops. To promote the sustainability and significant contribution of this enterprise, Biofuels in Africa provides guidance in formulating suitable policy regimes, which are based on protecting the rights of current land users, developing revenue-sharing schemes with local communities, safeguarding the environment and biodiversity, expanding institutional capacity, formulating new regulations and procedures, and emulating best practices from experienced countries. This volume will be of value to anyone interested in biofuels, including policy makers, development practitioners, private investors, researchers, and the general public. Now that African countries are trying to significantly increase their energy supply systems, biofuels are an attractive option using both dedicated crops and agricultural waste. This book provides guidance for them to develop a suitable policy regime for a significant contribution by biofuels. Professor Ogunlade R. Davidson, Minister of Energy and Water Resources, Sierra Leone Biofuels in Africa is a sorely needed resource for our understanding of the problems of expanding biofuels production in Africa. A high point of the book is a description of the projects that were started in several countries. A very useful book! Professor Jos Goldemberg, University of S o Paulo, Brazil As Africa most likely will play the same role for global biofuels as the Middle East does for oil, this comprehensive book on African biofuels should be compulsory reading for anyone interested in either African development or biofuels. The book captures the essence of long-term drivers and opportunities as well the complex challenges for investors and society of this huge emerging industry. Per Carstedt, Executive Chairman, EcoEnergy Africa
This report reviews the main linkages between climate change, water and agriculture as a means to identifying and discussing adaptation strategies for better use and conservation of water resources.
This open access book presents a comprehensive analysis of biofuel use strategies from an interdisciplinary perspective using sustainability science. This interdisciplinary perspective (social science-natural science) means that the strategies and policy options proposed will have significant impacts on the economy and society alike. Biofuels are expected to contribute to reducing greenhouse gas emissions, revitalizing economies in agricultural communities and alleviating poverty. However, despite these anticipated benefits, international organizations such as the FAO, OECD and UN have published reports expressing concerns that biofuel promotion may lead to deforestation, water pollution and water shortages. The impacts of biofuel use are extensive, cross-sectoral and complex, and as such, comprehensive analyses are required in order to assess the extent to which biofuels can contribute to sustainable societies. Applying interdisciplinary sustainability science concepts and methodologies, the book helps to enhance the establishment of a sustainable society as well as the development of appropriate responses to a global need for urgent action on current issues related to biofuels.
The nexus between water and energy raises a set of public policy questions that go far beyond water and energy. Economic vitality and management of scarce and precious resources are at stake. This book contributes to the body of knowledge and understanding regarding water, energy, and the links between the two in the American West and beyond. The research and analyses presented by the authors shed new light on the choices that must be made in order to avoid unnecessary harm in the development and management of water and energy systems to meet public needs in an ever changing environmental and economic climate. Indeed, the book shows, thoughtfully designed new technologies and approaches can help restore damaged environments and provide a range of benefits. The focus is the American West, but many of the lessons are global in their applicability. After a broad, stage-setting introductory section, the volume looks first at the use of water for energy production and then follows with chapters on the role of energy in water projects. The final section looks at the way forward, providing cases and recommendations for better, more efficient linkages in the water–energy nexus. Students and researchers in economics, public policy, environmental studies and law along with planners and policymakers will find this accessible and very current volume invaluable.
Providing comprehensive coverage on biofuel crop production and the technological, environmental and resource issues associated with a sustainable biofuel industry, this book is ideal for researchers and industry personnel. Beginning with an introduction to biofuels and the challenges they face, the book then includes detailed coverage on crops of current importance or with high future prospects, including sections on algae, sugar crops and grass, oil and forestry species. The chapters focus on the genetics, breeding, cultivation, harvesting and handling of each crop.