Stanley Meyer was an independent inventor and former NASA employee who designed and built a motor that ran completely on water, highlighting his technology with a water-powered dune buggy. His revolutionary car was recorded many times on film and Television. Meyer was recognized by national and international organizations, and was elected inventor of the year in "Who's Who of America" in 1993. This printing is from Public Domain. All proceeds go towards Non Profit Free Energy charity.
Water and Thermal Management of Proton Exchange Membrane Fuel Cells introduces the main research methods and latest advances in the water and thermal management of PEMFCs. The book introduces the transport mechanism of each component, including modeling methods at different scales, along with practical exercises. Topics include PEMFC fundamentals, working principles and transport mechanisms, characterization tests and diagnostic analysis, the simulation of multiphase transport and electrode kinetics, cell-scale modeling, stack-scale modeling, and system-scale modeling. This volume offers a practical handbook for researchers, students and engineers in the fields of proton exchange membrane fuel cells. Proton exchange membrane fuel cells (PEMFCs) are high-efficiency and low-emission electrochemical energy conversion devices. Inside the PEMFC complex, physical and chemical processes take place, such as electrochemical reaction, multiphase flow and heat transfer. This book explores these topics, and more. - Introduces the transport mechanism for each component of PEMFCs - Presents modeling methods at different scales, including component, cell, stack and system scales - Provides exercises in PEMFC modeling, along with examples of necessary codes - Covers the latest advances in PEMFCs in a convenient and structured manner - Offers a solution to researchers, students and engineers working on proton exchange membrane fuel cells
Polymer Electrolyte Membrane (PEM) fuel cells convert chemical energy in hydrogen into electrical energy with water as the only by-product. Thus, PEM fuel cells hold great promise to reduce both pollutant emissions and dependency on fossil fuels, especially for transportation—passenger cars, utility vehicles, and buses—and small-scale stationary and portable power generators. But one of the greatest challenges to realizing the high efficiency and zero emissions potential of PEM fuel cells technology is heat and water management. This book provides an introduction to the essential concepts for effective thermal and water management in PEM fuel cells and an assessment on the current status of fundamental research in this field. The book offers you: • An overview of current energy and environmental challenges and their imperatives for the development of renewable energy resources, including discussion of the role of PEM fuel cells in addressing these issues; • Reviews of basic principles pertaining to PEM fuel cells, including thermodynamics, electrochemical reaction kinetics, flow, heat and mass transfer; and • Descriptions and discussions of water transport and management within a PEM fuel cell, including vapor- and liquid-phase water removal from the electrodes, the effects of two-phase flow, and solid water or ice dynamics and removal, particularly the specialized case of starting a PEM fuel cell at sub-freezing temperatures (cold start) and the various processes related to ice formation.
Fuel cell cars can provide more efficient and cleaner transportation. However, we use our cars for transportation only 5% of the time. When parked, the fuel cell in the car can produce electricity from hydrogen, which is cleaner and more efficient than the current electricity system, generating useful ‘waste’ products in the form of heat and fresh water. The produced electricity, heat and fresh water can be fed into the respective grids or be used directly in our house, office or the school of our kids. The required hydrogen can be produced from gas (natural gas, biogas) or electricity (hydro, wind, solar, etc.). In the end, these fuel cell cars can replace all power plants worldwide. As a result, the ‘car as power plant’ can create an integrated, efficient, reliable, flexible, clean, smart and personalized transport, energy and water system: a real paradigm shift. The ‘Car as Power Plant’ is developed at Delft Technical University, in The Green Village: a sustainable, lively and entrepreneurial environment where we discover, learn and show how to solve society’s urgent challenges. The Green Village unifies clever, imaginative strengths of scientists and entrepreneurs and turns ideas and visions into experiences and commercially viable products and services. Innovative power that sets horizons for a new, sustainable, green and circular economy.
This book covers all the proposed fuel cell systems including PEMFC, SOFC, PAFC, MCFC, regenerative fuel cells, direct alcohol fuel cells, and small fuel cells to replace batteries.
Fuel Cell Modeling and Simulation: From Micro-Scale to Macro-Scale provides a comprehensive guide to the numerical model and simulation of fuel cell systems and related devices, with easy-to-follow instructions to help optimize analysis, design and control. With a focus on commercialized PEM and solid-oxide fuel cells, the book provides decision-making tools for each stage of the modeling process, including required accuracy and available computational capacity. Readers are guided through the process of developing bespoke fuel cell models for their specific needs. This book provides a step-by-step guide to the fundamentals of fuel cell modeling that is ideal for students, researchers and industry engineers working with fuel cell systems, but it will also be a great repository of knowledge for those involved with electric vehicles, batteries and computational fluid dynamics. Offers step-by-step guidance on the simulation of PEMFC and SOFC Provides an appendix of source codes for modeling, simulation and optimization algorithms Addresses the fundamental thermodynamics and reaction kinetics of fuel cells, fuel cell electric vehicles (FCEVs) and fuel cell power plant chapters
A complete, up-to-date, introductory guide to fuel cell technology and application Fuel Cell Fundamentals provides a thorough introduction to the principles and practicalities behind fuel cell technology. Beginning with the underlying concepts, the discussion explores fuel cell thermodynamics, kinetics, transport, and modeling before moving into the application side with guidance on system types and design, performance, costs, and environmental impact. This new third edition has been updated with the latest technological advances and relevant calculations, and enhanced chapters on advanced fuel cell design and electrochemical and hydrogen energy systems. Worked problems, illustrations, and application examples throughout lend a real-world perspective, and end-of chapter review questions and mathematical problems reinforce the material learned. Fuel cells produce more electricity than batteries or combustion engines, with far fewer emissions. This book is the essential introduction to the technology that makes this possible, and the physical processes behind this cost-saving and environmentally friendly energy source. Understand the basic principles of fuel cell physics Compare the applications, performance, and costs of different systems Master the calculations associated with the latest fuel cell technology Learn the considerations involved in system selection and design As more and more nations turn to fuel cell commercialization amidst advancing technology and dropping deployment costs, global stationary fuel cell revenue is expected to grow from $1.4 billion to $40.0 billion by 2022. The sector is forecasted to explode, and there will be a tremendous demand for high-level qualified workers with advanced skills and knowledge of fuel cell technology. Fuel Cell Fundamentals is the essential first step toward joining the new energy revolution.
This book represents a novel attempt to describe microbial fuel cells (MFCs) as a renewable energy source derived from organic wastes. Bioelectricity is usually produced through MFCs in oxygen-deficient environments, where a series of microorganisms convert the complex wastes into electrons via liquefaction through a cascade of enzymes in a bioelectrochemical process. The book provides a detailed description of MFC technologies and their applications, along with the theories underlying the electron transfer mechanisms, the biochemistry and the microbiology involved, and the material characteristics of the anode, cathode and separator. It is intended for a broad audience, mainly undergraduates, postgraduates, energy researchers, scientists working in industry and at research organizations, energy specialists, policymakers, and anyone else interested in the latest developments concerning MFCs.
3D PRINTING FOR ENERGY APPLICATIONS Explore current and future perspectives of 3D printing for the fabrication of high value-added complex devices 3D Printing for Energy Applications delivers an insightful and cutting-edge exploration of the applications of 3D printing to the fabrication of complex devices in the energy sector. The book covers aspects related to additive manufacturing of functional materials with applicability in the energy sector. It reviews both the technology of printable materials and 3D printing strategies itself, and its use in energy devices or systems. Split into three sections, the book covers the 3D printing of functional materials before delving into the 3D printing of energy devices. It closes with printing challenges in the production of complex objects. It also presents an interesting perspective on the future of 3D printing of complex devices. Readers will also benefit from the inclusion of: A thorough introduction to 3D printing of functional materials, including metals, ceramics, and composites An exploration of 3D printing challenges for production of complex objects, including computational design, multimaterials, tailoring AM components, and volumetric additive manufacturing Practical discussions of 3D printing of energy devices, including batteries, supercaps, solar panels, fuel cells, turbomachinery, thermoelectrics, and CCUS Perfect for materials scientists, 3D Printing for Energy Applications will also earn a place in the libraries of graduate students in engineering, chemistry, and material sciences seeking a one-stop reference for current and future perspectives on 3D printing of high value-added complex devices.
FUEL YOUR EVIL URGES WHILE YOU BUILD GREEN ENERGY PROJECTS! Go green as you amass power! Fuel Cell Projects for the Evil Genius broadens your knowledge of this important, rapidly developing technology and shows you how to build practical, environmentally conscious projects using the three most popular and widely accessible fuel cells! In Fuel Cell Projects for the Evil Genius, high-tech guru Gavin Harper gives you everything you need to conduct practical experiments and build energizing fuel cell projects. You'll find complete, easy-to-follow plans that feature clear diagrams and schematics, as well as: Instructions for fascinating sustainable energy projects, complete with 180 how-to illustrations Explanations of how fuel cells work and why the hydrogen economy will impact our lives in the near future Frustration-factor removal-all the needed parts are listed, along with sources Science fair project ideas that are on the cutting edge of the latest technological developments Fuel Cell Projects for the Evil Genius gives you complete plans, instructions, parts lists, and sources to: Understand how hydrogen could meet our energy needs in a post-carbon economy Build a fuel cell car to race against your friends Build an intelligent fuel cell car which autonomously drives Build a simple fuel cell using adhesive bandages Hydrogen fuel your iPod Have a hydrogen barbecue-cook your food with zero carbon emissions! Discover how the amounts of hydrogen supplied to fuel cells affect the amounts of electricity produced And much more!