Natural and constructed wetlands play a very important role within the landscape and their ecological services are highly valuable. Water management, including flood water retention, biomass production, carbon sequestration, wastewater treatment and as a biodiversity source are among the most important ecological services of wetlands. In order to provide these services, wetlands need to be properly evaluated, protected and maintained. This book provides results of the latest research in wetland science around the world. Chapters deal with such topics as the use of constructed wetlands for treatment of various types of wastewater, use of constructed wetlands in agroforestry, wetland hydrology and evapotranspiration, the effect of wetlands on landscape temperature, and chemical properties of wetland soils.
A groundbreaking book on the application of the economic and environmentally effective treatment of industrial wastewater Constructed Wetlands for Industrial Wastewater Treatment contains a review of the state-of-the-art applications of constructed wetland technology for industrial wastewater treatment. This green technology offers many economic, environmental, and societal advantages. The text examines the many unique uses and the effectiveness of constructed wetlands for the treatment of complex and heavily polluted wastewater from various industrial sources. The editor — a noted expert in the field — and the international author team (93 authors from 22 countries) present vivid examples of the current state of constructed wetlands in the industrial sector. The text is filled with international case studies and research outcomes and covers a wide range of applications of these sustainable systems including facilities such as the oil and gas industry, agro-industries, paper mills, pharmaceutical industry, textile industry, winery, brewery, sludge treatment and much more. The book reviews the many system setups, examines the different removal and/or transformational processes of the various pollutants and explores the overall effectiveness of this burgeoning technology. This important resource: Offers the first, groundbreaking text on constructed wetlands use for industrial wastewater treatment Provides a single reference with summarized information and the state-of-the-art knowledge of the use of Constructed Wetlands in the industrial sector through case studies, research outcomes and review chapters Covers a range of industrial applications such as hydrocarbons/oil and gas industry, food and beverage, wood and leather processing, agro-industries, pharmaceuticals and many others Includes best practices drawn by a collection of international case studies Presents the latest technological developments in the industry Written for civil and environmental engineers, sustainable wastewater/water managers in industry and government, Constructed Wetlands for Industrial Wastewater Treatment is the first book to offer a comprehensive review of the set-up and effectiveness of constructed wetlands for a wide range of industrial applications to highlight the diverse economic and environmental benefits this technology brings to the industry.
Natural and constructed wetlands play a very important role on the landscape and their ecological services are highly valuable. In fact, some wetland types are regarded as one of the most valuable ecosystems on the Earth. Water management, including flood water retention, biomass production, carbon sequestration, wastewater treatment and biodiversity sources, are among the most important ecological services of wetlands. The book is aimed at the use of constructed wetlands for wastewater treatment and for the evaluation of various ecosystem services of natural wetlands. Special attention is paid to the role and potential use of wetlands on the agricultural landscape. The book presents up-to-date results of ongoing research and the content of the book could be used by wetland scientists, researchers, engineers, designers, regulators, decision-makers, universities teachers, landscape engineers and landscape planners as well as by water authorities, water regulatory offices or wastewater treatment research institutions.
Nutrient enrichment of water resources by inputs of nitrogen and phosphorus, which can lead to eutrophication is still a water quality problem in agriculturally dominated watersheds around the world. Internationally, wetlands both constructed and natural are increasingly being used to help reduce both point and non-point source nutrient and contaminant loss from agricultural practices. This publication contains papers presented at the international symposium on "Nutrient Management in Agricultural Watersheds: A Wetlands Solution," which was held during May, 2004 in Wexford, Ireland. The symposium was the result of an international collaboration between the Teagasc Research Centre, Johnstown Castle, Ireland, National Parks and Wildlife, Department of Environment, Heritage and Local Government, Ireland and the Soil and Water Science Department at the University of Florida, Gainesville, USA. These proceedings cover aspects of water quality within agricultural watersheds; management practices to mitigate contaminant and nutrient loss from agriculture; wetland biogeochemistry; wetland functions and values within agricultural dominated landscapes; case studies of wetlands used to retain nutrient and contaminant loss from agriculture; and finally some management and policy issues concerning wetlands are presented. This book provides a good interdisciplinary synthesis of international experiences both in Europe and the USA on the use of wetlands within agricultural watersheds.
Constructed Wetlands for Water Quality Improvement is a virtual encyclopedia of state-of-the-art information on the use of constructed wetlands for improving water quality. Well-organized and easy-to-use, this book features contributions from prominent scientists and provides important case studies. It is ideal for anyone involved in the application of constructed wetlands in treating municipal and industrial wastewater, mine drainage, and non-point source pollution. Constructed Wetlands for Water Quality Improvement is a "must" for industrial and municipal water treatment professionals, consulting engineers, federal and state regulators, wetland scientists and professionals, ecologists, environmental health professionals, planners, and industrial environmental managers.
This book provides a broad and well-integrated overview of recent major scientific results in wetland science and their applications in natural resource management issues. The contributors, internationally known experts, summarize the state of the art on an array of topics, divided into four broad areas: The Role of Wetlands for Integrated Water Resources Management: Putting Theory into Practice; Wetland Science for Environmental Management; Wetland Biogeochemistry; Wetlands and Climate Change Worldwide.
The second edition of a bestseller, Soil and Water Chemistry: An Integrative Approach maintains the balanced perspective that made the first edition a hugely popular textbook. The second edition includes new figures and tables, new chapters, and expanded exercises in each chapter. It covers topics including soil chemical environment, soil minerals,
Wetlands have been used for uncontrolled wastewater disposal for centuries. However, the change in attitude towards wetlands during the 1950s and 1960s caused the minimization of the use of natural wetlands for wastewater treatment (at least in developed countries). Constructed wetlands have been used for wastewater treatment for about forty years. Constructed wetland treatment systems are engineered systems that have been designed and constructed to utilize the natural processes for removal of pollutants. They are designed to take advantage of many of the same processes that occur in natural wetlands, but do so within a more controlled environment. The aim of this book is to summarize the knowledge on horizontal s- surface flow constructed wetlands (HF CWs) and objectively evaluate their treatment efficiency under various conditions. The information on this type of wastewater treatment technology is scattered in many publications but a comprehensive summary based on world-wide experience has been lacking. The book provides an extensive overview of this treatment technology around the world, including examples from more than 50 countries and examples of various types of wastewater treated in HF CWs.