Computational Modeling And Simulations Of Biomolecular Systems

Computational Modeling And Simulations Of Biomolecular Systems

Author: Benoit Roux

Publisher: World Scientific

Published: 2021-08-23

Total Pages: 209

ISBN-13: 9811232776

DOWNLOAD EBOOK

This textbook originated from the course 'Simulation, Modeling, and Computations in Biophysics' that I have taught at the University of Chicago since 2011. The students typically came from a wide range of backgrounds, including biology, physics, chemistry, biochemistry, and mathematics, and the course was intentionally adapted for senior undergraduate students and graduate students. This is not a highly technical book dedicated to specialists. The objective is to provide a broad survey from the physical description of a complex molecular system at the most fundamental level, to the type of phenomenological models commonly used to represent the function of large biological macromolecular machines.The key conceptual elements serving as building blocks in the formulation of different levels of approximations are introduced along the way, aiming to clarify as much as possible how they are interrelated. The only assumption is a basic familiarity with simple mathematics (calculus and integrals, ordinary differential equations, matrix linear algebra, and Fourier-Laplace transforms).


Water in Biological and Chemical Processes

Water in Biological and Chemical Processes

Author: Biman Bagchi

Publisher: Cambridge University Press

Published: 2013-11-14

Total Pages: 383

ISBN-13: 1107037298

DOWNLOAD EBOOK

A unified overview of the dynamical properties of water and its unique and diverse role in biological and chemical processes.


Ions in Water and Biophysical Implications

Ions in Water and Biophysical Implications

Author: Yizhak Marcus

Publisher: Springer Science & Business Media

Published: 2012-08-13

Total Pages: 224

ISBN-13: 9400746474

DOWNLOAD EBOOK

Over the past decade, numerous books have attempted to explain ions in aqueous solutions in relation to biophysical phenomena. Ions in Water and Biophysical Implications, from Chaos to Cosmos offers a physicochemical point of view of the spread of this matter and suggests innovative solutions that will challenge the biophysics research establishment. Starting with a throughout discussion of the properties of liquid water, in particular as a structured liquid with an extensive hydrogen bonded structure, the book examines water as a solvent for gases, non-electrolytes, and electrolytes and reviews the properties, sizes and thermodynamics of isolated and aqueous ions, as well as their interactions, including those of polyelectrolytes. The effects of ions on water structure, including those on solvent dynamics and certain thermodynamic quantities, are presented. This volume investigates water surfaces with its vapour, with another liquid, and with a solid, as well as the effects of solutes, including simple ions and the water-miscible non-electrolytes. Surfaces are relevant to biomolecular and colloidal systems and the book discusses briefly surfactants, micelles and vesicles. Finally, the book concludes with a review of the various biophysical implications involving chaotropic and kosmotropic ions in homogeneous solutions and the Hofmeister series for ions concerning biomolecular and colloidal systems and some aspects of protein hydration and K+/Na+ selectivity in ion channels. Ions in Water and Biophysical Implications, from Chaos to Cosmos will appeal to physical chemists, biophysicists, biochemists, as well as to all students and researchers involved in the study of aqueous solutions.


Spectroscopy and Modeling of Biomolecular Building Blocks

Spectroscopy and Modeling of Biomolecular Building Blocks

Author: Jean-Pierre Schermann

Publisher: Elsevier

Published: 2007-10-16

Total Pages: 499

ISBN-13: 0080558224

DOWNLOAD EBOOK

Spectroscopy and Modeling of Biomolecular Building Blocks presents an overview of recent advances in the intertwining of the following research fields: photon and electron spectroscopy, quantum chemistry, modelling and mass-spectrometry. The coupling of these disciplines offers a new point of view to the understanding of isolated elementary building blocks of biomolecules and their assemblies. It allows the unambiguous separation between intrinsic properties of biomolecular systems and those induced by the presence of their environment. The first chapters provide background in modelling (I), frequency-resolved spectroscopy using microwave, infrared and UV photons, time-resolved spectroscopy in the femtosecond domain and energy-resolved electron spectroscopy (II) and production of gas-phase neutral and ionic biomolecular species, mass-spectrometry, ion mobility and BIRD techniques (III). Chapter IV is devoted to case studies of gas-phase experimental investigations coupled to quantum or classical calculations. The topics are structural studies of nucleobases and oligonucleotides, peptides and proteins, sugars; neuromolecules; non-covalent complexes; chiral systems, interactions of low-energy electrons with biomolecules in the radiation chemistry context and very large gas-phase biomolecular systems. The fifth chapter concerns the link between gas-phase and liquid-phase. Different treatments of solvation are illustrated through examples pointing out the influence of progressive addition of water molecules upon properties of nucleobases, peptides, sugars and neuromolecules. - Offer a new perspective to the understanding of isolated elementary building blocks of bio molecules - Includes case studies of experimental investigations coupled to quantum or classical calculations


Biological Water

Biological Water

Author: Gertz I. Likhtenshtein

Publisher: Springer Nature

Published: 2021-10-21

Total Pages: 523

ISBN-13: 3030825035

DOWNLOAD EBOOK

This book embraces all physiochemical aspects of the structure and molecular dynamics of water, focusing on its role in biological objects, e.g. living cells and tissue, and in the formation of functionally active structures of biological molecules and their ensembles. Water is the single most abundant chemical found in all living things. It offers a detailed look into the latest modern physical methods for studying the molecular structure and dynamics of the water and provides a critical analysis of the existing literature data on the properties of water in biological objects. Water as a chemical reagent and as a medium for the formation of conditions for enzymatic catalysis is a core focus of this book. Although well suited for active researchers, the book as a whole, as well as each chapter on its own, can be used as fundamental reference material for graduate and undergraduate students throughout chemistry, physics, biophysics and biomedicine.


Radiation Damage in Biomolecular Systems

Radiation Damage in Biomolecular Systems

Author: Gustavo García Gómez-Tejedor

Publisher: Springer Science & Business Media

Published: 2012-01-05

Total Pages: 508

ISBN-13: 9400725639

DOWNLOAD EBOOK

Since the discovery of X-rays and radioactivity, ionizing radiations have been widely applied in medicine both for diagnostic and therapeutic purposes. The risks associated with radiation exposure and handling led to the parallel development of the field of radiation protection. Pioneering experiments done by Sanche and co-workers in 2000 showed that low-energy secondary electrons, which are abundantly generated along radiation tracks, are primarily responsible for radiation damage through successive interactions with the molecular constituents of the medium. Apart from ionizing processes, which are usually related to radiation damage, below the ionization level low-energy electrons can induce molecular fragmentation via dissociative processes such as internal excitation and electron attachment. This prompted collaborative projects between different research groups from European countries together with other specialists from Canada, the USA and Australia. This book summarizes the advances achieved by these research groups after more than ten years of studies on radiation damage in biomolecular systems. An extensive Part I deals with recent experimental and theoretical findings on radiation induced damage at the molecular level. It includes many contributions on electron and positron collisions with biologically relevant molecules. X-ray and ion interactions are also covered. Part II addresses different approaches to radiation damage modelling. In Part III biomedical aspects of radiation effects are treated on different scales. After the physics-oriented focus of the previous parts, there is a gradual transition to biology and medicine with the increasing size of the object studied. Finally, Part IV is dedicated to current trends and novel techniques in radiation reserach and the applications hence arising. It includes new developments in radiotherapy and related cancer therapies, as well as technical optimizations of accelerators and totally new equipment designs, giving a glimpse of the near future of radiation-based medical treatments.


Nanoscale Insights into Ion-Beam Cancer Therapy

Nanoscale Insights into Ion-Beam Cancer Therapy

Author: Andrey V. Solov’yov

Publisher: Springer

Published: 2016-12-07

Total Pages: 508

ISBN-13: 3319430300

DOWNLOAD EBOOK

This book provides a unique and comprehensive overview of state-of-the-art understanding of the molecular and nano-scale processes that play significant roles in ion-beam cancer therapy. It covers experimental design and methodology, and reviews the theoretical understanding of the processes involved. It offers the reader an opportunity to learn from a coherent approach about the physics, chemistry and biology relevant to ion-beam cancer therapy, a growing field of important medical application worldwide. The book describes phenomena occurring on different time and energy scales relevant to the radiation damage of biological targets and ion-beam cancer therapy from the molecular (nano) scale up to the macroscopic level. It illustrates how ion-beam therapy offers the possibility of excellent dose localization for treatment of malignant tumours, minimizing radiation damage in normal tissue whilst maximizing cell-killing within the tumour, offering a significant development in cancer therapy. The full potential of such therapy can only be realized by better understanding the physical, chemical and biological mechanisms, on a range of time and space scales that lead to cell death under ion irradiation. This book describes how, using a multiscale approach, experimental and theoretical expertise available can lead to greater insight at the nanoscopic and molecular level into radiation damage of biological targets induced by ion impact. The book is intended for advanced students and specialists in the areas of physics, chemistry, biology and medicine related to ion-beam therapy, radiation protection, biophysics, radiation nanophysics and chemistry, atomic and molecular physics, condensed matter physics, and the physics of interaction of charged particles with matter. One of the most important features of the book is the inclusive multiscale approach to the understanding of complex and highly interdisciplinary processes behind ion-beam cancer therapy, which stretches from the atomistic level up to the biological scale and is demonstrated to be in excellent agreement with experimental observations.


Radiation Damage in Biomolecular Systems

Radiation Damage in Biomolecular Systems

Author: Gustavo García Gómez-Tejedor

Publisher: Springer Science & Business Media

Published: 2012-01-04

Total Pages: 508

ISBN-13: 9400725647

DOWNLOAD EBOOK

Since the discovery of X-rays and radioactivity, ionizing radiations have been widely applied in medicine both for diagnostic and therapeutic purposes. The risks associated with radiation exposure and handling led to the parallel development of the field of radiation protection. Pioneering experiments done by Sanche and co-workers in 2000 showed that low-energy secondary electrons, which are abundantly generated along radiation tracks, are primarily responsible for radiation damage through successive interactions with the molecular constituents of the medium. Apart from ionizing processes, which are usually related to radiation damage, below the ionization level low-energy electrons can induce molecular fragmentation via dissociative processes such as internal excitation and electron attachment. This prompted collaborative projects between different research groups from European countries together with other specialists from Canada, the USA and Australia. This book summarizes the advances achieved by these research groups after more than ten years of studies on radiation damage in biomolecular systems. An extensive Part I deals with recent experimental and theoretical findings on radiation induced damage at the molecular level. It includes many contributions on electron and positron collisions with biologically relevant molecules. X-ray and ion interactions are also covered. Part II addresses different approaches to radiation damage modelling. In Part III biomedical aspects of radiation effects are treated on different scales. After the physics-oriented focus of the previous parts, there is a gradual transition to biology and medicine with the increasing size of the object studied. Finally, Part IV is dedicated to current trends and novel techniques in radiation reserach and the applications hence arising. It includes new developments in radiotherapy and related cancer therapies, as well as technical optimizations of accelerators and totally new equipment designs, giving a glimpse of the near future of radiation-based medical treatments.