Vortex methods have emerged as a new class of powerful numerical techniques to analyze and compute vortex motion. This book addresses the theoretical, numerical, computational, and physical aspects of vortex methods and vortex motion.
Vortex methods have matured in recent years, offering an interesting alternative to finite difference and spectral methods for high resolution numerical solutions of the Navier Stokes equations. In the past three decades, research into the numerical analysis aspects of vortex methods has provided a solid mathematical background for understanding the accuracy and stability of the method. At the same time vortex methods retain their appealing physical character, which was the motivation for their introduction. This book presents and analyzes vortex methods as a tool for the direct numerical simulation of impressible viscous flows. It will interest graduate students and researchers in numerical analysis and fluid mechanics and also serve as an ideal textbook for courses in fluid dynamics.
Many important phenomena in fluid motion are evident in vortex flow, i.e., flows in which vortical structures are significant in determining the whole flow. This book, which consists of lectures given at a NATO ARW held in Grenoble (France) in June 1992, provides an up-to-date account of current research in the study of these phenomena by means of numerical methods and mathematical modelling. Such methods include Eulerian methods (finite difference, spectral and wavelet methods) as well as Lagrangian methods (contour dynamics, vortex methods) and are used to study such topics as 2- or 3-dimensional turbulence, vorticity generation by solid bodies, shear layers and vortex sheets, and vortex reconnection. For researchers and graduate students in computational fluid dynamics, numerical analysis, and applied mathematics.
This book is a comprehensive and intensive monograph for scientists, engineers and applied mathematicians, as well as graduate students in fluid dynamics. It starts with a brief review of fundamentals of fluid dynamics, with an innovative emphasis on the intrinsic orthogonal decomposition of fluid dynamic process, by which one naturally identifies the content and scope of vorticity and vortex dynamics. This is followed by a detailed presentation of vorticity dynamics as the basis of later development. In vortex dynamics part the book deals with the formation, motion, interaction, stability, and breakdown of various vortices. Typical vortex structures are analyzed in laminar, transitional, and turbulent flows, including stratified and rotational fluids. Physical understanding of vertical flow phenomena and mechanisms is the first priority throughout the book. To make the book self-contained, some mathematical background is briefly presented in the main text, but major prerequisites are systematically given in appendices. Material usually not seen in books on vortex dynamics is included, such as geophysical vortex dynamics, aerodynamic vortical flow diagnostics and management.
This book presents comprehensive and authoritative coverage of the wide field of concentrated vortices observed in nature and technique. The methods for research of their kinematics and dynamics are considered. Special attention is paid to the flows with helical symmetry. The authors have described models of vortex structures used for interpretation of experimental data which serve as a ground for development of theoretical and numerical approaches to vortex investigation.
Vortex dynamics is a natural paradigm for the field of chaotic motion and modern dynamical system theory. However, this volume focuses on those aspects of fluid motion that are primarily controlled by the vorticity and are such that the effects of the other fluid properties are secondary.
Understanding vortex dynamics is the key to understanding much of fluid dynamics. For this reason, many researchers, using a great variety of different approaches--analytical, computational, and experimental--have studied the dynamics of vorticity. The AMS-SIAM Summer Seminar on Vortex Dynamics and Vortex Methods, held in June 1990 at the University of Washington in Seattle, brought together experts with a broad range of viewpoints and areas of specialization. This volume contains the proceedings from that seminar. The focus here is on the numerical computation of high Reynolds number incompressible flows. Also included is a smaller selection of important experimental results and analytic treatments. Many of the articles contain valuable introductory and survey material as well as open problems. Readers will appreciate this volume for its coverage of a wide variety of numerical, analytical, and experimental tools and for its treatment of interesting important discoveries made with these tools.
This book is a comprehensive introduction to the mathematical theory of vorticity and incompressible flow ranging from elementary introductory material to current research topics. While the contents center on mathematical theory, many parts of the book showcase the interaction between rigorous mathematical theory, numerical, asymptotic, and qualitative simplified modeling, and physical phenomena. The first half forms an introductory graduate course on vorticity and incompressible flow. The second half comprise a modern applied mathematics graduate course on the weak solution theory for incompressible flow.
Panel methods employing surface distributions of source and vortex singularities based on the solution of boundary integral equations have been extensively used for modeling external and internal aerodynamic flows. Part 1 describes the surface vorticity method and illustrates applications of this technique over a wide range of engineering problems in aerodynamics and turbomachines, including lifting aerofoils and cascades, mixed-flow and rotating cascades for fans, pumps or turbines, meridional flows in turbomachines, flow past axisymmetric bodies, ducts and ducted propellers or fans. Part 2 extends surface vorticity modeling to the fairly new CFM field of vortex dynamics or vortex cloud theory. Methods are developed, again from first principles, to deal with shear layers, boundary layers, periodic wakes, bluff-body flows, cascades and aerofoils including the use of stall control spoilers. A number of useful computer programs are included.