"It is a pleasure to turn to Wussing's book, a sound presentation of history," declared the Bulletin of the American Mathematical Society. The author, Director of the Institute for the History of Medicine and Science at Leipzig University, traces the axiomatic formulation of the abstract notion of group. 1984 edition.
The Banach–Tarski Paradox is a most striking mathematical construction: it asserts that a solid ball can be taken apart into finitely many pieces that can be rearranged using rigid motions to form a ball twice as large. This volume explores the consequences of the paradox for measure theory and its connections with group theory, geometry, set theory, and logic. This new edition of a classic book unifies contemporary research on the paradox. It has been updated with many new proofs and results, and discussions of the many problems that remain unsolved. Among the new results presented are several unusual paradoxes in the hyperbolic plane, one of which involves the shapes of Escher's famous 'Angel and Devils' woodcut. A new chapter is devoted to a complete proof of the remarkable result that the circle can be squared using set theory, a problem that had been open for over sixty years.
Originally issued in 1893, this popular Fifth Edition (1991) covers the period from antiquity to the close of World War I, with major emphasis on advanced mathematics and, in particular, the advanced mathematics of the nineteenth and early twentieth centuries. In one concise volume this unique book presents an interesting and reliable account of mathematics history for those who cannot devote themselves to an intensive study. The book is a must for personal and departmental libraries alike. Cajori has mastered the art of incorporating an enormous amount of specific detail into a smooth-flowing narrative. The Index—for example—contains not just the 300 to 400 names one would expect to find, but over 1,600. And, for example, one will not only find John Pell, but will learn who he was and some specifics of what he did (and that the Pell equation was named erroneously after him). In addition, one will come across Anna J. Pell and learn of her work on biorthogonal systems; one will find not only H. Lebesgue but the not unimportant (even if not major) V.A. Lebesgue. Of the Bernoullis one will find not three or four but all eight. One will find R. Sturm as well as C. Sturm; M. Ricci as well as G. Ricci; V. Riccati as well as J.F. Riccati; Wolfgang Bolyai as well as J. Bolyai; the mathematician Martin Ohm as well as the physicist G.S. Ohm; M. Riesz as well as F. Riesz; H.G. Grassmann as well as H. Grassmann; H.P. Babbage who continued the work of his father C. Babbage; R. Fuchs as well as the more famous L. Fuchs; A. Quetelet as well as L.A.J. Quetelet; P.M. Hahn and Hans Hahn; E. Blaschke and W. Blaschke; J. Picard as well as the more famous C.E. Picard; B. Pascal (of course) and also Ernesto Pascal and Etienne Pascal; and the historically important V.J. Bouniakovski and W.A. Steklov, seldom mentioned at the time outside the Soviet literature.
Cover -- Title page -- Contents -- Preface -- Acknowledgments -- Photograph and Figure Credits -- Chapter 1. An overview of American mathematics: 1776-1876 -- Chapter 2. A new departmental prototype: J.J. Sylvester and the Johns Hopkins University -- Chapter 3. Mathematics at Sylvester's Hopkins -- Chapter 4. German mathematics and the early mathematical career of Felix Klein -- Chapter 5. America's wanderlust generation -- Chapter 6. Changes on the horizon -- Chapter 7. The World's Columbian exposition of 1893 and the Chicago mathematical congress -- Chapter 8. Surveying mathematical landscapes: The Evanston colloquium lectures -- Chapter 9. Meeting the challenge: The University of Chicago and the American mathematical research community -- Chapter 10. Epilogue: Beyond the threshold: The American mathematical research community, 1900-1933 -- Bibliography -- Subject Index -- Back Cover
This book resulted from two reports (published in 1928 and 1932) of the Committee on Rational Transformations, established by the National Research Council. The purpose of the reports was to give a comprehensive survey of the literature on the subject. Each chapter is regarded as a separate unit that can be read independently.