Vorlesungen Uber Zahlentheorie

Vorlesungen Uber Zahlentheorie

Author: Peter Gustav Lejeune Dirichlet

Publisher: Cambridge University Press

Published: 2013-08-22

Total Pages: 651

ISBN-13: 1108050395

DOWNLOAD EBOOK

The third edition (1879) of Dirichlet's posthumously published 1856-7 lectures on number theory includes several famous proofs.


Elliptic Modular Functions

Elliptic Modular Functions

Author: B. Schoeneberg

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 244

ISBN-13: 3642656633

DOWNLOAD EBOOK

This book is a fully detailed introduction to the theory of modular functions of a single variable. I hope that it will fill gaps which in view ofthe lively development ofthis theory have often been an obstacle to the students' progress. The study of the book requires an elementary knowledge of algebra, number theory and topology and a deeper knowledge of the theory of functions. An extensive discussion of the modular group SL(2, Z) is followed by the introduction to the theory of automorphic functions and auto morphic forms of integral dimensions belonging to SL(2,Z). The theory is developed first via the Riemann mapping theorem and then again with the help of Eisenstein series. An investigation of the subgroups of SL(2, Z) and the introduction of automorphic functions and forms belonging to these groups folIows. Special attention is given to the subgroups of finite index in SL (2, Z) and, among these, to the so-called congruence groups. The decisive role in this setting is assumed by the Riemann-Roch theorem. Since its proof may be found in the literature, only the pertinent basic concepts are outlined. For the extension of the theory, special fields of modular functions in particular the transformation fields of order n-are studied. Eisen stein series of higher level are introduced which, in case of the dimension - 2, allow the construction of integrals of the 3 rd kind. The properties of these integrals are discussed at length.


Introduction to the Arithmetic Theory of Automorphic Functions

Introduction to the Arithmetic Theory of Automorphic Functions

Author: Gorō Shimura

Publisher: Princeton University Press

Published: 1971-08-21

Total Pages: 292

ISBN-13: 9780691080925

DOWNLOAD EBOOK

The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.


Eta Products and Theta Series Identities

Eta Products and Theta Series Identities

Author: Günter Köhler

Publisher: Springer Science & Business Media

Published: 2011-01-15

Total Pages: 627

ISBN-13: 3642161529

DOWNLOAD EBOOK

This monograph deals with products of Dedekind's eta function, with Hecke theta series on quadratic number fields, and with Eisenstein series. The author brings to the public the large number of identities that have been discovered over the past 20 years, the majority of which have not been published elsewhere. The book will be of interest to graduate students and scholars in the field of number theory and, in particular, modular forms. It is not an introductory text in this field. Nevertheless, some theoretical background material is presented that is important for understanding the examples in Part II of the book. In Part I relevant definitions and essential theorems -- such as a complete proof of the structure theorems for coprime residue class groups in quadratic number fields that are not easily accessible in the literature -- are provided. Another example is a thorough description of an algorithm for listing all eta products of given weight and level, together with proofs of some results on the bijection between these eta products and lattice simplices.


Vorlesungen über die hypergeometrische Funktion

Vorlesungen über die hypergeometrische Funktion

Author: Felix Klein

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 356

ISBN-13: 3642678882

DOWNLOAD EBOOK

Bei der Herausgabe der KLEINschen Vorlesung über die hyper geometrische Funktion erschienen nur zwei Wege gangbar: Entweder eine durchgreifende Umarbeitung, auch im großen, oder eine möglichst weitgehende Erhaltung der ursprünglichen Form. Vor allem auch aus historischen Gründen wurde der letztere Weg beschritten. Daher ist die Anordnung des Stoffes erhalten geblieben; e, s ist nur, von kleinen Änderungen abgesehen, ein Exkurs über homogene Schreibweise aus der KLEINschen Vorlesung über lineare Differentialgleichungen ein gefügt, ferner sind die Schlußbemerkungen zur geometrischen Theorie im Falle komplexer Exponenten als durch die Arbeiten von F. SCHILLING überholt, weggelassen. Aus dem obengenannten Grunde sind beispiels weise auch Entwicklungen beibehalten worden, die heute schon dem Anfänger geläufig sind (etwa die Ausführungen über stereographische Projektion). In Rücksicht auf möglichste Erhaltung der KLEINschen Darstellung sind ferner Hinweise des Herausgebers auf inzwischen ge machte Fortschritte der Wissenschaft vom Texte getrennt als Anmerkun gen am Schluß zusammengestellt. Diese Hinweise erheben aber in keiner Weise den Anspruch auf Vollständigkeit. Bei der nicht zu um gehenden Revision des Textes im einzelnen ist, dem oben angegebenen Gesichtspunkt entsprechend, möglichste Wahrung des persönlichen KLEINschen Stils angestrebt. übrigens habe ich darauf Bedacht genommen, auch dem A nlänger die Lektüre durch Anmerkungen und durch Nachweise der KLEINschen Zitate zu erleichtern. Denn zweifellos bieten gerade diese Vorlesungen eine treffliche Ergänzung und Weiterführung dessen, was der Studierende mittleren Semesters an Geometrie und Funktionentheorie kennen gelernt hat.


Ramanujan

Ramanujan

Author: Srinivasa Ramanujan Aiyangar

Publisher: American Mathematical Soc.

Published: 1995-09-07

Total Pages: 366

ISBN-13: 9780821891254

DOWNLOAD EBOOK

The letters that Ramanujan wrote to G. H. Hardy on January 16 and February 27, 1913, are two of the most famous letters in the history of mathematics. These and other letters introduced Ramanujan and his remarkable theorems to the world and stimulated much research, especially in the 1920s and 1930s. This book brings together many letters to, from, and about Ramanujan. The letters came from the National Archives in Delhi, the Archives in the State of Tamil Nadu, and a variety of other sources. Helping to orient the reader is the extensive commentary, both mathematical and cultural, by Berndt and Rankin; in particular, they discuss in detail the history, up to the present day, of each mathematical result in the letters. Containing many letters that have never been published before, this book will appeal to those interested in Ramanujan's mathematics as well as those wanting to learn more about the personal side of his life. Ramanujan: Letters and Commentary was selected for the CHOICE list of Outstanding Academic Books for 1996.