A study which reveals active volcanoes to be dynamically evolving structures, the growth and development of which are punctuated by episodes of instability and subsequent structural failure. Edifice failure and consequent debris avalanche formation appears to occur, on average, at least four times a century, and similar behaviour is known to have occured at volcanoes on Mars and Venus. The book claims that hazard-mitigation strategies must now address the possibility of future collapse events which may be ten-times greater than that at Mount St Helens in 1980.
The book presents current research into the effect that environmental conditions have on volcanic eruptions and the subsequent emplacement of volcanic products. This is accomplished through a series of chapters that investigate specific environments - both terrestrial and extraterrestrial - and the expression of volcanic materials found within those settings. Current state-of-the-art numerical, analytical and computer models are used in most chapters to provide robust, quantitative insights into how volcanoes behave in different environmental settings. Readership: Upper level undergraduates and new graduates. The book is primarily a presentation of research results rather than a tutorial for the general public. Textbook or supplementary reading for courses in volcanology or comparative planetology at college/university level.
This book is a comprehensive advancement about the understanding of the volcanology of Mars in all its aspects, from its primary formation to its evolution in time, from the smaller structures to the bigger structures. It discusses the implications of volcanism in the general environmental and geological context of Mars. The book is validating the Southern Giant Impact Hypothesis explaining the formation of Mars in an interdisciplinary approach, including mineralogical, geochemical, volcanological as well as geomorphological information. Implications for future explorations in terms of resources are provided. This book serves as a textbook for undergraduate and graduate level to foster new basic research in the field of planetary volcanology and is a new guide for future missions toward a volcanic world, including new detailed information for the general audience who is always keen to know more about the history of Mars and its large volcanoes. The book also presents an updated situation about the water resources of the planet.
Volcanism and tectonism are the dominant endogenic means by which planetary surfaces change. This book aims to encompass the broad range in character of volcanism, tectonism, faulting and associated interactions observed on planetary bodies across the inner solar system - a region that includes Mercury, Venus, Earth, the Moon, Mars and asteroids. The diversity and breadth of landforms produced by volcanic and tectonic processes is enormous, and varies across the inner solar system bodies. As a result, the selection of prevailing landforms and their underlying formational processes that are described and highlighted in this volume are but a primer to the expansive field of planetary volcanism and tectonism. This Special Publication features 22 research articles about volcanic and tectonic processes manifest across the inner solar system.
VOLCANOES Since the publication of the first edition of Volcanoes in 2010, our world of volcanology has changed in exciting ways. Volcanoes have continued to erupt (some 61 eruptions with VEI magnitudes greater than 3 have taken place since 2010), and in this revised and updated edition, the authors describe the largest of these, and the ones that have had the most impact on society. Volcanoes, Second Edition, contains more than 80 new photographs and figures to better illustrate volcanic features and processes, with an updated Bibliography that includes important papers describing recent eruptions and new findings. Volcanologic research is improving the foundations of knowledge upon which all our science rests, and we briefly summarize the most important of these advances and new research tools developed over the past eleven years. The most productive of these new tools are remotely operated, constantly monitoring volcanoes and their impacts on the Earth’s atmosphere from space and exploring new volcanic worlds beyond the bounds of Earth. Remotely Operated Vehicles (ROVs) are now widely available to understand better the most active volcanoes on Earth - those beneath the sea. This superlative textbook will enable students who may never see an erupting volcano to evaluate news stories about far-away eruptions, and to distinguish between overly sensational stories and factual reporting that puts facts in context. Emergency managers, land use planners, and civic officials also need to understand volcanic processes when their communities are threatened – this book will inform and guide them in their decision-making. Avoiding overly technical discussions and unnecessary use of jargon, with the important needs of civil authorities, teachers and students particularly in mind, this second edition of Volcanoes will also be of interest to general readers who are interested in these fascinating and ever-changing features of our dynamic planet.
Climate Forcing of Geological Hazards provides a valuable new insight into how climate change is able to influence, modulate and trigger geological and geomorphological phenomena, such as earthquakes, tsunamis, volcanic eruptions and landslides; ultimately increasing the risk of natural hazards in a warmer world. Taken together, the chapters build a panorama of a field of research that is only now becoming recognized as important in the context of the likely impacts and implications of anthropogenic climate change. The observations, analyses and interpretations presented in the volume reinforce the idea that a changing climate does not simply involve the atmosphere and hydrosphere, but also elicits potentially hazardous responses from the solid Earth, or geosphere. Climate Forcing of Geological Hazards is targeted particularly at academics, graduate students and professionals with an interest in environmental change and natural hazards. As such, we are hopeful that it will encourage further investigation of those mechanisms by which contemporary climate change may drive potentially hazardous geological and geomorphological activity, and of the future ramifications for society and economy.
Volcanoes and the Environment is a comprehensive and accessible text incorporating contributions from some of the world's authorities in volcanology. This book is an indispensable guide for those interested in how volcanism affects our planet's environment. It spans a wide variety of topics from geology to climatology and ecology; it also considers the economic and social impacts of volcanic activity on humans. Topics covered include how volcanoes shape the environment, their effect on the geological cycle, atmosphere and climate, impacts on health of living on active volcanoes, volcanism and early life, effects of eruptions on plant and animal life, large eruptions and mass extinctions, and the impact of volcanic disasters on the economy. This book is intended for students and researchers interested in environmental change from the fields of earth and environmental science, geography, ecology and social science. It will also interest policy makers and professionals working on natural hazards.
This volume is an excellently written and beautifully illustrated textbook compiled by a multidisciplinary group of experts examining the production, transport and deposition of volcaniclasts (tephra and epiclasts) as well as their economic geology.
In the last one hundred years, a number of catastrophic events associated with rockslide dam formation and failure have occurred in the mountain regions of the world. This book presents a global view of the formation, characteristics and behaviour of natural and artificial rockslide dams. Chapters include a comprehensive state-of-the-art review of our global understanding natural and artificial rockslide dams, overviews of approaches to rockslide dam risk mitigation, regional studies of rockslide dams in India, Nepal, China, Pakistan, New Zealand, and Argentina. Rockslide dams associated with large-scale instability of volcanoes are also examined. Detailed case histories of well-known historic and prehistoric rockslide dams provide examples of investigations of rockslide dam behaviour, stability, and characteristics. The formation and behaviour of rockslide-dammed lakes ("Quake Lakes") formed during the 2008 Wenchuan Earthquake, China are also comprehensively summarised. The formation, sedimentology and stability of rockslide dams is examined in several analytical papers. An analysis of break-out floods from volcanogenic lakes and hydrological methods of estimating break-out flood magnitude and behavior are reviewed. The use of remote sensing data in rockslide-dammed lake characterisation is explored and a new approach to the classification of rockslide dams is introduced. Finally, a unique section of the book summarises Russian and Kyrgyz experience with blast-fill dam construction in two papers by leading authorities on the technology. The volume contains 24 papers by 50 authors from 16 countries including most of the recognised world authorities on the subject.
Recent global events such as the devastating 1998 Papua New Guinea tsunami, the 2004 Sumatran tsunami and the 2006 SE Asia undersea network cable failure underscore the societal and economic effects of submarine mass movements. These events call upon the scientific community to understand submarine mass movement processes and consequences to assist in hazard assessment, mitigation and planning. Additionally, submarine mass movements are beginning to be recognized as prevalent in continental margin geologic sections. As such, they represent a significant if not dominant role in margin sedimentary processes. They also represent a potential hazard to hydrocarbon exploration and development, but also represent exploration indicators and targets. This volume consists of a collection of the latest scientific research by international experts in geological, geophysical, engineering and environment aspects of submarine mass failures, focussed on understanding the full spectrum of challenges presented by submarine mass movements and their consequences.