This book contains extended and revised versions of the best papers presented at the 20th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2012, held in Santa Cruz, CA, USA, in October 2012. The 12 papers included in the book were carefully reviewed and selected from the 33 full papers presented at the conference. The papers cover a wide range of topics in VLSI technology and advanced research. They address the current trend toward increasing chip integration and technology process advancements bringing about stimulating new challenges both at the physical and system-design levels, as well as in the test of these systems.
This monograph, divided into four parts, presents a comprehensive treatment and systematic examination of cycle spaces of flag domains. Assuming only a basic familiarity with the concepts of Lie theory and geometry, this work presents a complete structure theory for these cycle spaces, as well as their applications to harmonic analysis and algebraic geometry. Key features include: accessible to readers from a wide range of fields, with all the necessary background material provided for the nonspecialist; many new results presented for the first time; driven by numerous examples; the exposition is presented from the complex geometric viewpoint, but the methods, applications and much of the motivation also come from real and complex algebraic groups and their representations, as well as other areas of geometry; comparisons with classical Barlet cycle spaces are given; and good bibliography and index. Researchers and graduate students in differential geometry, complex analysis, harmonic analysis, representation theory, transformation groups, algebraic geometry, and areas of global geometric analysis will benefit from this work.
This book contains extended and revised versions of the best papers presented at the 25th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2017, held in Abu Dhabi, United Arab Emirates, in August 2017. The 11 papers included in this book were carefully reviewed and selected from the 33 full papers presented at the conference. The papers cover a wide range of topics in VLSI technology and advanced research. They address the latest scientific and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) Design. On the occasion of the silver jubilee of the VLSI-SoC conference series the book also includes a special chapter that presents the history of the VLSI-SoC series of conferences and its relation with VLSI-SoC evolution since the early 80s up to the present.
This book contains extended and revised versions of the best papers presented at the 24th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2016, held in Tallinn, Estonia, in September 2016. The 11 papers included in the book were carefully reviewed and selected from the 36 full papers presented at the conference. The papers cover a wide range of topics in VLSI technology and advanced research. They address the latest scientific and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) Design.
Multiview autostereoscopic displays (MADs) make it possible to view video content in 3D without wearing special glasses, and such displays have recently become available. The main problem of MADs is that they require several (typically 8 or 9) views, while most of the 3D video content is in stereoscopic 3D today. To bridge this content-display gap, the research community started to devise automatic multiview synthesis (MVS) methods. Common MVS methods are based on depth-image-based rendering, where a dense depth map of the scene is used to reproject the image to new viewpoints. Although physically correct, this approach requires accurate depth maps and additional inpainting steps. Our work uses an alternative conversion concept based on image domain warping (IDW) which has been successfully applied to related problems such as aspect ratio retargeting for streaming video, and dispa- rity remapping for depth adjustments in stereoscopic 3D content. IDW shows promising performance in this context as it only requires robust, sparse point- correspondences and no inpainting steps. However, MVS, using IDW as well as alternative approaches, is computationally demanding and requires realtime processing - yet such methods should be portable to end-user and even mobile devices to develop their full potential. To this end, this thesis investigates efficient algorithms and hardware architectures for a variety of subproblems arising in the MVS pipeline.
This book contains extended and revised versions of the best papers presented during the fourteenth IFIP TC 10/WG 10.5 International Conference on Very Large Scale Integration. This conference provides a forum to exchange ideas and show industrial and academic research results in microelectronics design. The current trend toward increasing chip integration and technology process advancements brings about stimulating new challenges both at the physical and system-design levels.
This book examines the issue of design of fully-integrated frequency synthesizers suitable for system-on-a-chip (SOC) processors. This book takes a more global design perspective in jointly examining the design space at the circuit level as well as at the architectural level. The coverage of the book is comprehensive and includes summary chapters on circuit theory as well as feedback control theory relevant to the operation of phase locked loops (PLLs). On the circuit level, the discussion includes low-voltage analog design in deep submicron digital CMOS processes, effects of supply noise, substrate noise, as well device noise. On the architectural level, the discussion includes PLL analysis using continuous-time as well as discrete-time models, linear and nonlinear effects of PLL performance, and detailed analysis of locking behavior. The material then develops into detailed circuit and architectural analysis of specific clock generation blocks. This includes circuits and architectures of PLLs with high power supply noise immunity and digital PLL architectures where the loop filter is digitized. Methods of generating low-spurious sampling clocks for discrete-time analog blocks are then examined. This includes sigma-delta fractional-N PLLs, Direct Digital Synthesis (DDS) techniques and non-conventional uses of PLLs. Design for test (DFT) issues as they arise in PLLs are then discussed. This includes methods of accurately measuring jitter and built-in-self-test (BIST) techniques for PLLs. Finally, clocking issues commonly associated to system-on-a-chip (SOC) designs, such as multiple clock domain interfacing and partitioning, and accurate clock phase generation techniques using delay-locked loops (DLLs) are also addressed. The book provides numerous real world applications, as well as practical rules-of-thumb for modern designers to use at the system, architectural, as well as the circuit level. This book is well suited for practitioners as well as graduate level students who wish to learn more about time-domain analysis and design of frequency synthesis techniques.
This book contains extended and revised versions of the best papers presented at the 26th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2018, held in Verona, Italy, in October 2018. The 13 full papers included in this volume were carefully reviewed and selected from the 27 papers (out of 106 submissions) presented at the conference. The papers discuss the latest academic and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) design, considering the challenges of nano-scale, state-of-the-art and emerging manufacturing technologies. In particular they address cutting-edge research fields like heterogeneous, neuromorphic and brain-inspired, biologically-inspired, approximate computing systems.
With the rapid advances in technology, the conventional academic and research departments of Electronics engineering, Electrical Engineering, Computer Science, Instrumentation Engineering over the globe are forced to come together and update their curriculum with few common interdisciplinary courses in order to come out with the engineers and researchers with muli-dimensional capabilities. The gr- ing perception of the ‘Hardware becoming Soft’ and ‘Software becoming Hard’ with the emergence of the FPGAs has made its impact on both the hardware and software professionals to change their mindset of working in narrow domains. An interdisciplinary field where ‘Hardware meets the Software’ for undertaking se- ingly unfeasible tasks is System on Chip (SoC) which has become the basic pl- form of modern electronic appliances. If it wasn’t for SoCs, we wouldn’t be driving our car with foresight of the traffic congestion before hand using GPS. Without the omnipresence of the SoCs in our every walks of life, the society is wouldn’t have evidenced the rich benefits of the convergence of the technologies such as audio, video, mobile, IPTV just to name a few. The growing expectations of the consumers have placed the field of SoC design at the heart of at variance trends. On one hand there are challenges owing to design complexities with the emergence of the new processors, RTOS, software protocol stacks, buses, while the brutal forces of deep submicron effects such as crosstalk, electromigration, timing closures are challe- ing the design metrics.
This book contains extended and revised versions of the best papers presented at the 19th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2011, held in Hong Kong, China, in October 2011. The 10 papers included in the book were carefully reviewed and selected from the 45 full papers and 16 special session papers presented at the conference. The papers cover a wide range of topics in VLSI technology and advanced research. They address the current trend toward increasing chip integration and technology process advancements bringing about stimulating new challenges both at the physical and system-design levels, as well as in the test of theses systems.