VLSI and Hardware Implementations using Modern Machine Learning Methods

VLSI and Hardware Implementations using Modern Machine Learning Methods

Author: Sandeep Saini

Publisher: CRC Press

Published: 2021-12-31

Total Pages: 292

ISBN-13: 1000523845

DOWNLOAD EBOOK

Machine learning is a potential solution to resolve bottleneck issues in VLSI via optimizing tasks in the design process. This book aims to provide the latest machine-learning–based methods, algorithms, architectures, and frameworks designed for VLSI design. The focus is on digital, analog, and mixed-signal design techniques, device modeling, physical design, hardware implementation, testability, reconfigurable design, synthesis and verification, and related areas. Chapters include case studies as well as novel research ideas in the given field. Overall, the book provides practical implementations of VLSI design, IC design, and hardware realization using machine learning techniques. Features: Provides the details of state-of-the-art machine learning methods used in VLSI design Discusses hardware implementation and device modeling pertaining to machine learning algorithms Explores machine learning for various VLSI architectures and reconfigurable computing Illustrates the latest techniques for device size and feature optimization Highlights the latest case studies and reviews of the methods used for hardware implementation This book is aimed at researchers, professionals, and graduate students in VLSI, machine learning, electrical and electronic engineering, computer engineering, and hardware systems.


Machine Learning Techniques for VLSI Chip Design

Machine Learning Techniques for VLSI Chip Design

Author: Abhishek Kumar

Publisher: John Wiley & Sons

Published: 2023-08-01

Total Pages: 244

ISBN-13: 1119910390

DOWNLOAD EBOOK

MACHINE LEARNING TECHNIQUES FOR VLSI CHIP DESIGN This cutting-edge new volume covers the hardware architecture implementation, the software implementation approach, the efficient hardware of machine learning applications with FPGA or CMOS circuits, and many other aspects and applications of machine learning techniques for VLSI chip design. Artificial intelligence (AI) and machine learning (ML) have, or will have, an impact on almost every aspect of our lives and every device that we own. AI has benefitted every industry in terms of computational speeds, accurate decision prediction, efficient machine learning (ML), and deep learning (DL) algorithms. The VLSI industry uses the electronic design automation tool (EDA), and the integration with ML helps in reducing design time and cost of production. Finding defects, bugs, and hardware Trojans in the design with ML or DL can save losses during production. Constraints to ML-DL arise when having to deal with a large set of training datasets. This book covers the learning algorithm for floor planning, routing, mask fabrication, and implementation of the computational architecture for ML-DL. The future aspect of the ML-DL algorithm is to be available in the format of an integrated circuit (IC). A user can upgrade to the new algorithm by replacing an IC. This new book mainly deals with the adaption of computation blocks like hardware accelerators and novel nano-material for them based upon their application and to create a smart solution. This exciting new volume is an invaluable reference for beginners as well as engineers, scientists, researchers, and other professionals working in the area of VLSI architecture development.


Heterogenous Computational Intelligence in Internet of Things

Heterogenous Computational Intelligence in Internet of Things

Author: Pawan Singh

Publisher: CRC Press

Published: 2023-10-26

Total Pages: 315

ISBN-13: 1000967808

DOWNLOAD EBOOK

We have seen a sharp increase in the development of data transfer techniques in the networking industry over the past few years. We can see that the photos are assisting clinicians in detecting infection in patients even in the current COVID-19 pandemic condition. With the aid of ML/AI, medical imaging, such as lung X-rays for COVID-19 infection, is crucial in the early detection of many diseases. We also learned that in the COVID-19 scenario, both wired and wireless networking are improved for data transfer but have network congestion. An intriguing concept that has the ability to reduce spectrum congestion and continuously offer new network services is providing wireless network virtualization. The degree of virtualization and resource sharing varies between the paradigms. Each paradigm has both technical and non-technical issues that need to be handled before wireless virtualization becomes a common technology. For wireless network virtualization to be successful, these issues need careful design and evaluation. Future wireless network architecture must adhere to a number of Quality of Service (QoS) requirements. Virtualization has been extended to wireless networks as well as conventional ones. By enabling multi-tenancy and tailored services with a wider range of carrier frequencies, it improves efficiency and utilization. In the IoT environment, wireless users are heterogeneous, and the network state is dynamic, making network control problems extremely difficult to solve as dimensionality and computational complexity keep rising quickly. Deep Reinforcement Learning (DRL) has been developed by the use of Deep Neural Networks (DNNs) as a potential approach to solve high-dimensional and continuous control issues effectively. Deep Reinforcement Learning techniques provide great potential in IoT, edge and SDN scenarios and are used in heterogeneous networks for IoT-based management on the QoS required by each Software Defined Network (SDN) service. While DRL has shown great potential to solve emerging problems in complex wireless network virtualization, there are still domain-specific challenges that require further study, including the design of adequate DNN architectures with 5G network optimization issues, resource discovery and allocation, developing intelligent mechanisms that allow the automated and dynamic management of the virtual communications established in the SDNs which is considered as research perspective.


Machine Learning in VLSI Computer-Aided Design

Machine Learning in VLSI Computer-Aided Design

Author: Ibrahim (Abe) M. Elfadel

Publisher: Springer

Published: 2019-03-15

Total Pages: 697

ISBN-13: 3030046664

DOWNLOAD EBOOK

This book provides readers with an up-to-date account of the use of machine learning frameworks, methodologies, algorithms and techniques in the context of computer-aided design (CAD) for very-large-scale integrated circuits (VLSI). Coverage includes the various machine learning methods used in lithography, physical design, yield prediction, post-silicon performance analysis, reliability and failure analysis, power and thermal analysis, analog design, logic synthesis, verification, and neuromorphic design. Provides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability; Discusses the use of machine learning techniques in the context of analog and digital synthesis; Demonstrates how to formulate VLSI CAD objectives as machine learning problems and provides a comprehensive treatment of their efficient solutions; Discusses the tradeoff between the cost of collecting data and prediction accuracy and provides a methodology for using prior data to reduce cost of data collection in the design, testing and validation of both analog and digital VLSI designs. From the Foreword As the semiconductor industry embraces the rising swell of cognitive systems and edge intelligence, this book could serve as a harbinger and example of the osmosis that will exist between our cognitive structures and methods, on the one hand, and the hardware architectures and technologies that will support them, on the other....As we transition from the computing era to the cognitive one, it behooves us to remember the success story of VLSI CAD and to earnestly seek the help of the invisible hand so that our future cognitive systems are used to design more powerful cognitive systems. This book is very much aligned with this on-going transition from computing to cognition, and it is with deep pleasure that I recommend it to all those who are actively engaged in this exciting transformation. Dr. Ruchir Puri, IBM Fellow, IBM Watson CTO & Chief Architect, IBM T. J. Watson Research Center


Soft Computing and Signal Processing

Soft Computing and Signal Processing

Author: V. Sivakumar Reddy

Publisher: Springer Nature

Published: 2022-02-15

Total Pages: 793

ISBN-13: 9811670889

DOWNLOAD EBOOK

This book presents selected research papers on current developments in the fields of soft computing and signal processing from the Fourth International Conference on Soft Computing and Signal Processing (ICSCSP 2021). The book covers topics such as soft sets, rough sets, fuzzy logic, neural networks, genetic algorithms and machine learning and discusses various aspects of these topics, e.g., technological considerations, product implementation and application issues.


Opto-VLSI Devices and Circuits for Biomedical and Healthcare Applications

Opto-VLSI Devices and Circuits for Biomedical and Healthcare Applications

Author: Ankur Kumar

Publisher: CRC Press

Published: 2023-09-04

Total Pages: 218

ISBN-13: 1000932346

DOWNLOAD EBOOK

The text comprehensively discusses the latest Opto-VLSI devices and circuits useful for healthcare and biomedical applications. It further emphasizes the importance of smart technologies such as artificial intelligence, machine learning, and the internet of things for the biomedical and healthcare industries. Discusses advanced concepts in the field of electro-optics devices for medical applications. Presents optimization techniques including logical effort, particle swarm optimization and genetic algorithm to design Opto-VLSI devices and circuits. Showcases the concepts of artificial intelligence and machine learning for smart medical devices and data auto-collection for distance treatment. Covers advanced Opto-VLSI devices including a field-effect transistor and optical sensors, spintronic and photonic devices. Highlights application of flexible electronics in health monitoring and artificial intelligence integration for better medical devices. The text presents the advances in the fields of optics and VLSI and their applicability in diverse areas including biomedical engineering and the healthcare sector. It covers important topics such as FET biosensors, optical biosensors and advanced optical materials. It further showcases the significance of smart technologies such as artificial intelligence, machine learning and the internet of things for the biomedical and healthcare industries. It will serve as an ideal design book for senior undergraduate, graduate students, and academic researchers in the fields including electrical engineering, electronics and communication engineering, computer engineering and biomedical engineering.


FPGA Implementations of Neural Networks

FPGA Implementations of Neural Networks

Author: Amos R. Omondi

Publisher: Springer Science & Business Media

Published: 2006-10-04

Total Pages: 365

ISBN-13: 0387284877

DOWNLOAD EBOOK

During the 1980s and early 1990s there was signi?cant work in the design and implementation of hardware neurocomputers. Nevertheless, most of these efforts may be judged to have been unsuccessful: at no time have have ha- ware neurocomputers been in wide use. This lack of success may be largely attributed to the fact that earlier work was almost entirely aimed at developing custom neurocomputers, based on ASIC technology, but for such niche - eas this technology was never suf?ciently developed or competitive enough to justify large-scale adoption. On the other hand, gate-arrays of the period m- tioned were never large enough nor fast enough for serious arti?cial-neur- network (ANN) applications. But technology has now improved: the capacity and performance of current FPGAs are such that they present a much more realistic alternative. Consequently neurocomputers based on FPGAs are now a much more practical proposition than they have been in the past. This book summarizes some work towards this goal and consists of 12 papers that were selected, after review, from a number of submissions. The book is nominally divided into three parts: Chapters 1 through 4 deal with foundational issues; Chapters 5 through 11 deal with a variety of implementations; and Chapter 12 looks at the lessons learned from a large-scale project and also reconsiders design issues in light of current and future technology.


Efficient Processing of Deep Neural Networks

Efficient Processing of Deep Neural Networks

Author: Vivienne Sze

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 254

ISBN-13: 3031017668

DOWNLOAD EBOOK

This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.


Digital Integrated Circuit Design

Digital Integrated Circuit Design

Author: Hubert Kaeslin

Publisher: Cambridge University Press

Published: 2008-04-28

Total Pages: 878

ISBN-13: 0521882672

DOWNLOAD EBOOK

This practical, tool-independent guide to designing digital circuits takes a unique, top-down approach, reflecting the nature of the design process in industry. Starting with architecture design, the book comprehensively explains the why and how of digital circuit design, using the physics designers need to know, and no more.