Vito Volterra Symposium on Mathematical Models in Biology

Vito Volterra Symposium on Mathematical Models in Biology

Author: Claudio Barigozzi

Publisher: Springer Science & Business Media

Published: 2013-03-13

Total Pages: 422

ISBN-13: 3642931618

DOWNLOAD EBOOK

The idea of organizing a symposium on mathematical models in biology came to some colleagues, members of the Accademia dei Lincei, in order to point out the importance of mathematics not only for supplying instruments for the elaboration and the evaluation of experimental data, but also for discussing the possibility of developing mathematical formulations of biological problems. This appeared particularly appropriate for genetics, where mathematical models have been of historical importance. When the organizing work had started, it became clear to us that the classic studies of Vito Volterra (who was also a Member of the Academy and its President from 1923 to 1926) might be con sidered a further reason to have the meeting in Rome at the Accademia dei Lincei; thus the meeting is dedicated to his memory. Biology, in its manifold aspects proved to Se ~ difficult object for an exhaustive approach; thus it became necessary for practical reasons to make a choice of problems. Therefore not all branches of biology have been represented. The proceedings of the symposium, as a whole, assume a knowledge of mathematics on the part of the reader; however the problem of teaching mathematics to biologists was the subject of a round table discussion, not recorded in these proceedings. On this were brought up some basic points to be recommended to teachers on an international basis, and a statement was prepared for circulation. The Organizing Committee TABLE OF CONTENTS TOPIC I MODELS OF NATUPAL SELECTION . . . . . . . • . . . .


Mathematical Biology II

Mathematical Biology II

Author: James D. Murray

Publisher: Springer Science & Business Media

Published: 2006-05-31

Total Pages: 834

ISBN-13: 0387224386

DOWNLOAD EBOOK

This richly illustrated third edition provides a thorough training in practical mathematical biology and shows how exciting mathematical challenges can arise from a genuinely interdisciplinary involvement with the biosciences. It has been extensively updated and extended to cover much of the growth of mathematical biology. From the reviews: ""This book, a classical text in mathematical biology, cleverly combines mathematical tools with subject area sciences."--SHORT BOOK REVIEWS


Mathematical Modeling of the Hearing Process

Mathematical Modeling of the Hearing Process

Author: M.H. Holmes

Publisher: Springer Science & Business Media

Published: 2013-03-13

Total Pages: 113

ISBN-13: 3642464459

DOWNLOAD EBOOK

The articles of these proceedings arise from a NSF-CBMS regional conference on the mathematical modeling of the hearing process, that was held at Rensselaer Polytechnic Institute in the summer of 1980. To put the a=ticles in perspective, it is best to briefly review the history of suc~ modeling. It has proceeded, more or less, in three stages. The first was initiated by Herman Helmholtz in the 1880's, whose theories dominated the subject for years. However, because of his lack of accurate experimental data and his heuristic arguments it became apparent that his models needed revision. Accordingly, based on the experimental observations of von Bekesy, the "long wave" theories were developed in the 1950's by investigators such as Zwislocki, Peterson, and Bogert. However, as the ex?eri~ents became more refined (such as Rhode's ~wssbauer Measurements) even these models came into question. This has brought on a flurry of 'activity in recent years into how to extend the models to account for these more recent eXT. lerimental observations. One approach is through a device co~monly refered to as a second filter (see Allen's article) and another is through a more elaborate hydroelastic model (see Chadwick's article). In conjunction with this latter approach, there has been some recent work on developing a low frequency model of the cochlea (see Holmes' article).


Mathematical Topics in Population Biology, Morphogenesis and Neurosciences

Mathematical Topics in Population Biology, Morphogenesis and Neurosciences

Author: Ei Teramoto

Publisher: Springer Science & Business Media

Published: 2013-03-08

Total Pages: 359

ISBN-13: 3642933602

DOWNLOAD EBOOK

This volume represents the edited proceedings of the International Symposium on Mathematical Biology held in Kyoto, November 10-15, 1985. The symposium was or ganized by an international committee whose members are: E. Teramoto, M. Yamaguti, S. Amari, S.A. Levin, H. Matsuda, A. Okubo, L.M. Ricciardi, R. Rosen, and L.A. Segel. The symposium included technical sessions with a total of 11 invited papers, 49 contributed papers and a poster session where 40 papers were displayed. These Proceedings consist of selected papers from this symposium. This symposium was the second Kyoto meeting on mathematical topics in biology. The first was held in conjunction with the Sixth International Biophysics Congress in 1978. Since then this field of science has grown enormously, and the number of scientists in the field has rapidly increased. This is also the case in Japan. About 80 young japanese scientists and graduate students participated this time. . The sessions were divided into 4 ; , categories: 1) Mathematical Ecology and Population Biology, 2) Mathematical Theory of Developmental Biology and Morphogenesis, 3) Theoretical Neurosciences, and 4) Cell Kinetics and Other Topics. In every session, there were stimulating and active discussions among the participants. We are convinced that the symposium was highly successful in transmitting scientific information across disciplines and in establishing fruitful contacts among the participants. We owe this success to the cooperation of all participants.


Current Catalog

Current Catalog

Author: National Library of Medicine (U.S.)

Publisher:

Published:

Total Pages: 1550

ISBN-13:

DOWNLOAD EBOOK

First multi-year cumulation covers six years: 1965-70.


Stochastic Transport Processes in Discrete Biological Systems

Stochastic Transport Processes in Discrete Biological Systems

Author: Eckart Frehland

Publisher: Springer Science & Business Media

Published: 2013-03-13

Total Pages: 182

ISBN-13: 3642475116

DOWNLOAD EBOOK

These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio logical 'transport systems can be complex. For example, the transport process can be coupled to other processes such as chemical reactions and take place in discontinuous structures of molecular dimensions. Furthermore, since there are strong electric fields or high concentration gradients across biological membranes ion transport processes of biological relevance are mostly processes far from equilibrium. For these reasons the development of new theoretical concepts has been necessary. The concept of transport in discrete systems has turned out to be more appropriate than continuum models.