Visualization of Time-Oriented Data

Visualization of Time-Oriented Data

Author: Wolfgang Aigner

Publisher: Springer Science & Business Media

Published: 2011-05-30

Total Pages: 297

ISBN-13: 0857290797

DOWNLOAD EBOOK

Time is an exceptional dimension that is common to many application domains such as medicine, engineering, business, or science. Due to the distinct characteristics of time, appropriate visual and analytical methods are required to explore and analyze them. This book starts with an introduction to visualization and historical examples of visual representations. At its core, the book presents and discusses a systematic view of the visualization of time-oriented data along three key questions: what is being visualized (data), why something is visualized (user tasks), and how it is presented (visual representation). To support visual exploration, interaction techniques and analytical methods are required that are discussed in separate chapters. A large part of this book is devoted to a structured survey of 101 different visualization techniques as a reference for scientists conducting related research as well as for practitioners seeking information on how their time-oriented data can best be visualized.


Interactive Data Visualization

Interactive Data Visualization

Author: Matthew O. Ward

Publisher: CRC Press

Published: 2015-06-11

Total Pages: 571

ISBN-13: 1482257386

DOWNLOAD EBOOK

An Updated Guide to the Visualization of Data for Designers, Users, and ResearchersInteractive Data Visualization: Foundations, Techniques, and Applications, Second Edition provides all the theory, details, and tools necessary to build visualizations and systems involving the visualization of data. In color throughout, it explains basic terminology


Interactive Visual Data Analysis

Interactive Visual Data Analysis

Author: Christian Tominski

Publisher: CRC Press

Published: 2020-04-01

Total Pages: 318

ISBN-13: 1351648748

DOWNLOAD EBOOK

In the age of big data, being able to make sense of data is an important key to success. Interactive Visual Data Analysis advocates the synthesis of visualization, interaction, and automatic computation to facilitate insight generation and knowledge crystallization from large and complex data. The book provides a systematic and comprehensive overview of visual, interactive, and analytical methods. It introduces criteria for designing interactive visual data analysis solutions, discusses factors influencing the design, and examines the involved processes. The reader is made familiar with the basics of visual encoding and gets to know numerous visualization techniques for multivariate data, temporal data, geo-spatial data, and graph data. A dedicated chapter introduces general concepts for interacting with visualizations and illustrates how modern interaction technology can facilitate the visual data analysis in many ways. Addressing today’s large and complex data, the book covers relevant automatic analytical computations to support the visual data analysis. The book also sheds light on advanced concepts for visualization in multi-display environments, user guidance during the data analysis, and progressive visual data analysis. The authors present a top-down perspective on interactive visual data analysis with a focus on concise and clean terminology. Many real-world examples and rich illustrations make the book accessible to a broad interdisciplinary audience from students, to experts in the field, to practitioners in data-intensive application domains. Features: Dedicated to the synthesis of visual, interactive, and analysis methods Systematic top-down view on visualization, interaction, and automatic analysis Broad coverage of fundamental and advanced visualization techniques Comprehensive chapter on interacting with visual representations Extensive integration of automatic computational methods Accessible portrayal of cutting-edge visual analytics technology Foreword by Jack van Wijk For more information, you can also visit the author website, where the book's figures are made available under the CC BY Open Access license.


Data Visualization

Data Visualization

Author: Kieran Healy

Publisher: Princeton University Press

Published: 2018-12-18

Total Pages: 292

ISBN-13: 0691181624

DOWNLOAD EBOOK

An accessible primer on how to create effective graphics from data This book provides students and researchers a hands-on introduction to the principles and practice of data visualization. It explains what makes some graphs succeed while others fail, how to make high-quality figures from data using powerful and reproducible methods, and how to think about data visualization in an honest and effective way. Data Visualization builds the reader’s expertise in ggplot2, a versatile visualization library for the R programming language. Through a series of worked examples, this accessible primer then demonstrates how to create plots piece by piece, beginning with summaries of single variables and moving on to more complex graphics. Topics include plotting continuous and categorical variables; layering information on graphics; producing effective “small multiple” plots; grouping, summarizing, and transforming data for plotting; creating maps; working with the output of statistical models; and refining plots to make them more comprehensible. Effective graphics are essential to communicating ideas and a great way to better understand data. This book provides the practical skills students and practitioners need to visualize quantitative data and get the most out of their research findings. Provides hands-on instruction using R and ggplot2 Shows how the “tidyverse” of data analysis tools makes working with R easier and more consistent Includes a library of data sets, code, and functions


Visualization of Time-Oriented Data

Visualization of Time-Oriented Data

Author: Wolfgang Aigner

Publisher: Springer Nature

Published: 2023-12-21

Total Pages: 453

ISBN-13: 1447175271

DOWNLOAD EBOOK

This is an open access book. Time is an exceptional dimension with high relevance in medicine, engineering, business, science, biography, history, planning, or project management. Understanding time-oriented data via visual representations enables us to learn from the past in order to predict, plan, and build the future. This second edition builds upon the great success of the first edition. It maintains a brief introduction to visualization and a review of historical time-oriented visual representations. At its core, the book develops a systematic view of the visualization of time-oriented data. Separate chapters discuss interaction techniques and computational methods for supporting the visual data analysis. Many examples and figures illustrate the introduced concepts and techniques. So, what is new for the second edition? First of all, the second edition is now published as an open-access book so that anyone interested in the visualization of time and time-oriented data can read it. Second, the entire content has been revised and expanded to represent state-of-the-art knowledge. The chapter on interaction support now includes advanced methods for interacting with visual representations of time-oriented data. The second edition also covers the topics of data quality as well as segmentation and labeling. The comprehensive survey of classic and contemporary visualization techniques now provides more than 150 self-contained descriptions accompanied by illustrations and corresponding references. A completely new chapter describes how the structured survey can be used for the guided selection of suitable visualization techniques. For the second edition, our TimeViz Browser, the digital pendant to the survey of visualization techniques, received a major upgrade. It includes the same set of techniques as the book, but comes with additional filter and search facilities allowing scientists and practitioners to find exactly the solutions they are interested in.


Visualizing Data

Visualizing Data

Author: Ben Fry

Publisher: "O'Reilly Media, Inc."

Published: 2008

Total Pages: 384

ISBN-13: 0596519303

DOWNLOAD EBOOK

Provides information on the methods of visualizing data on the Web, along with example projects and code.


Visualizing with Text

Visualizing with Text

Author: Richard Brath

Publisher: CRC Press

Published: 2020-11-01

Total Pages: 299

ISBN-13: 1000196798

DOWNLOAD EBOOK

Visualizing with Text uncovers the rich palette of text elements usable in visualizations from simple labels through to documents. Using a multidisciplinary research effort spanning across fields including visualization, typography, and cartography, it builds a solid foundation for the design space of text in visualization. The book illustrates many new kinds of visualizations, including microtext lines, skim formatting, and typographic sets that solve some of the shortcomings of well-known visualization techniques. Key features: More than 240 illustrations to aid inspiration of new visualizations Eight new approaches to data visualization leveraging text Quick reference guide for visualization with text Builds a solid foundation extending current visualization theory Bridges between visualization, typography, text analytics, and natural language processing The author website, including teaching exercises and interactive demos and code, can be found here. Designers, developers, and academics can use this book as a reference and inspiration for new approaches to visualization in any application that uses text.


Visualizing Streaming Data

Visualizing Streaming Data

Author: Anthony Aragues

Publisher: "O'Reilly Media, Inc."

Published: 2018-06-01

Total Pages: 182

ISBN-13: 1492031801

DOWNLOAD EBOOK

While tools for analyzing streaming and real-time data are gaining adoption, the ability to visualize these data types has yet to catch up. Dashboards are good at conveying daily or weekly data trends at a glance, though capturing snapshots when data is transforming from moment to moment is more difficult—but not impossible. With this practical guide, application designers, data scientists, and system administrators will explore ways to create visualizations that bring context and a sense of time to streaming text data. Author Anthony Aragues guides you through the concepts and tools you need to build visualizations for analyzing data as it arrives. Determine your company’s goals for visualizing streaming data Identify key data sources and learn how to stream them Learn practical methods for processing streaming data Build a client application for interacting with events, logs, and records Explore common components for visualizing streaming data Consider analysis concepts for developing your visualization Define the dashboard’s layout, flow direction, and component movement Improve visualization quality and productivity through collaboration Explore use cases including security, IoT devices, and application data


Python Data Visualization Essentials Guide

Python Data Visualization Essentials Guide

Author: Kallur Rahman

Publisher: BPB Publications

Published: 2021-07-30

Total Pages: 319

ISBN-13: 9391030076

DOWNLOAD EBOOK

Build your data science skills. Start data visualization Using Python. Right away. Become a good data analyst by creating quality data visualizations using Python. KEY FEATURES ● Exciting coverage on loads of Python libraries, including Matplotlib, Seaborn, Pandas, and Plotly. ● Tons of examples, illustrations, and use-cases to demonstrate visual storytelling of varied datasets. ● Covers a strong fundamental understanding of exploratory data analysis (EDA), statistical modeling, and data mining. DESCRIPTION Data visualization plays a major role in solving data science challenges with various capabilities it offers. This book aims to equip you with a sound knowledge of Python in conjunction with the concepts you need to master to succeed as a data visualization expert. The book starts with a brief introduction to the world of data visualization and talks about why it is important, the history of visualization, and the capabilities it offers. You will learn how to do simple Python-based visualization with examples with progressive complexity of key features. The book starts with Matplotlib and explores the power of data visualization with over 50 examples. It then explores the power of data visualization using one of the popular exploratory data analysis-oriented libraries, Pandas. The book talks about statistically inclined data visualization libraries such as Seaborn. The book also teaches how we can leverage bokeh and Plotly for interactive data visualization. Each chapter is enriched and loaded with 30+ examples that will guide you in learning everything about data visualization and storytelling of mixed datasets. WHAT YOU WILL LEARN ● Learn to work with popular Python libraries and frameworks, including Seaborn, Bokeh, and Plotly. ● Practice your data visualization understanding across numerous datasets and real examples. ● Learn to visualize geospatial and time-series datasets. ● Perform correlation and EDA analysis using Pandas and Matplotlib. ● Get to know storytelling of complex and unstructured data using Bokeh and Pandas. ● Learn best practices in writing clean and short python scripts for a quicker visual summary of datasets. WHO THIS BOOK IS FOR This book is for all data analytics professionals, data scientists, and data mining hobbyists who want to be strong data visualizers by learning all the popular Python data visualization libraries. Prior working knowledge of Python is assumed. TABLE OF CONTENTS 1. Introduction to Data Visualization 2. Why Data Visualization 3. Various Data Visualization Elements and Tools 4. Using Matplotlib with Python 5. Using NumPy and Pandas for Plotting 6. Using Seaborn for Visualization 7. Using Bokeh with Python 8. Using Plotly, Folium, and Other Tools for Data Visualization 9. Hands-on Examples and Exercises, Case Studies, and Further Resources


Good Charts

Good Charts

Author: Scott Berinato

Publisher: Harvard Business Review Press

Published: 2016-04-26

Total Pages: 842

ISBN-13: 1633690717

DOWNLOAD EBOOK

Dataviz—the new language of business A good visualization can communicate the nature and potential impact of information and ideas more powerfully than any other form of communication. For a long time “dataviz” was left to specialists—data scientists and professional designers. No longer. A new generation of tools and massive amounts of available data make it easy for anyone to create visualizations that communicate ideas far more effectively than generic spreadsheet charts ever could. What’s more, building good charts is quickly becoming a need-to-have skill for managers. If you’re not doing it, other managers are, and they’re getting noticed for it and getting credit for contributing to your company’s success. In Good Charts, dataviz maven Scott Berinato provides an essential guide to how visualization works and how to use this new language to impress and persuade. Dataviz today is where spreadsheets and word processors were in the early 1980s—on the cusp of changing how we work. Berinato lays out a system for thinking visually and building better charts through a process of talking, sketching, and prototyping. This book is much more than a set of static rules for making visualizations. It taps into both well-established and cutting-edge research in visual perception and neuroscience, as well as the emerging field of visualization science, to explore why good charts (and bad ones) create “feelings behind our eyes.” Along the way, Berinato also includes many engaging vignettes of dataviz pros, illustrating the ideas in practice. Good Charts will help you turn plain, uninspiring charts that merely present information into smart, effective visualizations that powerfully convey ideas.